- 博客(1784)
- 收藏
- 关注
原创 收藏!AI Agents开发10条实战经验+大模型全套学习资料,助你快速入门
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
2026-01-06 11:26:24
355
原创 程序员必看!AI Agent术语指南:掌握这60个概念,轻松玩转大模型开发
文章详细介绍了AI Agent的60个核心术语,涵盖感知、思考、决策和执行全过程,并提供大模型学习路径与资源,包括基础理论、RAG开发、Agent设计等,旨在帮助读者从零入门到实战,掌握AI时代核心技能。
2026-01-06 11:24:18
556
原创 大模型预训练全攻略:从零到精通,收藏必备的技术指南
文章详细介绍了大模型预训练的全流程,包括预训练架构、语言建模任务、数据收集清洗、参数设置及评估方法。同时提供了系统化学习路径,涵盖基础理论、RAG开发、Agent设计、模型微调与部署等实战内容,适合不同背景人群学习AI大模型技术,助力向AI全栈工程师转型。
2026-01-06 11:20:44
446
原创 【收藏必备】LangChain+Embedding实战:从零构建本地知识问答系统,小白程序员必学指南
LangChain作为当前最热门的开源RAG(Retrieval-Augmented Generation,检索增强生成)框架,正在重塑我们处理非结构化数据的方式。在RAG框架中,检索环节至关重要,而Embeddings技术则是实现高效检索的核心组件之一。文本预处理与分块通过Embedding模型转换为向量表示存储到向量数据库查询时进行相似性检索将检索结果输入生成模型。
2026-01-06 11:17:13
603
原创 收藏必备!GenAI应用工程师崛起:从零到精通大模型技术与学习全攻略
文章介绍了GenAI应用工程师这一新兴职业,详细阐述了其所需的核心能力:一是驾驭AI构建模块(提示工程、代理框架等),二是精通AI辅助编程;产品设计能力是重要加分项。文章还提供了大模型学习路径,从基础理论到热门技术,适合不同背景人群入门进阶,帮助技术人才抓住AI时代机遇。
2026-01-06 11:14:45
357
原创 【干货收藏】RAG效果不佳?重排序(Rerank)技术全解析,提升大模型问答精准度
本文深入探讨RAG技术中的重排序(Rerank)环节,解决传统RAG效果不佳的问题。分析召回率与上下文窗口的矛盾,解释两阶段检索策略中重排序的关键作用。重排序模型虽速度较慢,但能更精准评估文档相关性,显著提升结果质量,特别适合处理复杂问答任务。
2026-01-06 11:09:53
422
原创 【干货收藏】避开99%开发者踩过的坑:大模型Agent设计的五个难度级别实战
本文详细介绍了大模型Agent设计的五个难度级别:基础工具使用、知识与记忆集成、长期记忆与推理能力、多Agent团队协作,以及完整的Agent系统。文章强调构建Agent应从简单开始,逐步增加复杂性,注重基础架构而非盲目追求最新功能。每个级别都配有可运行代码示例,帮助开发者避开常见陷阱,构建真正实用的AI Agent系统。
2026-01-06 11:07:24
357
原创 【干货收藏】从零开始:将你的LLM武装成超级助理的四大关键技术
文章介绍了如何将基础LLM从简单的概率预测模型武装成功能强大的AI Agent。详细阐述了四大关键技术:Prompt工程(沟通基础)、RAG(解决知识滞后和幻觉)、Function Calling(赋予行动能力)和MCP(提供标准通信协议)。这些技术协同工作,使LLM克服了知识滞后、幻觉和行动无能等局限,同时利用其强大的推理和规划能力,构建出能够处理复杂任务的智能系统。
2026-01-05 20:16:46
570
原创 【必学收藏】从入门到精通:Prompt工程的演变、价值与实战技巧
文章阐述了Prompt工程在大模型应用中的演变与价值。从ChatGPT初期的"答非所问"到如今模型的自然语言理解能力提升,Prompt设计从简单对话工具演变为需要精心设计的复杂系统。一个有效的Prompt包含角色定义、任务描述、上下文管理等要素,需考虑用户体验、业务逻辑、风险控制等多维度。当Prompt达到极限时,可考虑模型微调。Prompt工程是一个持续优化的过程,需要不断测试、调整、迭代,才能让AI真正发挥价值。
2026-01-05 20:13:08
384
原创 【必学收藏】MoE架构深度解析:大模型高效训练的核心技术与实战应用
Mixture of Experts (MoE) 是一种将复杂任务分解并由专业专家网络处理的神经网络架构。通过将传统Transformer中的FFN层替换为MoE层,实现稀疏激活和负载平衡,使模型在保持较低计算成本的同时显著扩大规模。MoE技术已成为GPT-4、Mixtral等大模型的核心技术,代表着大模型架构的重要转折点,为构建更大、更强且相对高效的模型提供了经济可行的路径。
2026-01-05 20:10:29
377
原创 程序员必看:RAG技术构建智能问答平台全流程,附学习资源收藏
本文详细介绍了RAG检索增强生成技术构建智能问答平台的完整流程。数据准备阶段包括数据收集清洗、文本解析分割、向量化转换及入库;应用阶段涵盖用户提问、问题解析、向量检索、答案重排、Prompt注入及LLM生成。通过对比测试,推荐使用bge-m3模型进行向量化处理,并采用语义分割提升效果。文章还提供大模型学习资源,帮助开发者掌握AI时代的核心技术。
2026-01-05 20:08:31
509
原创 收藏必备!从零构建AI Agent:知识库、工作流与Prompt工程实战指南
本文详解AI Agent五大核心组件,重点解析知识库构建(收集、整理、存储、检索策略)、工作流设计(任务执行路径)及Prompt工程(角色设定、示例优化)。提供大模型学习路径与实战资源,帮助开发者掌握减少模型"幻觉"的RAG技术、复杂任务自动化逻辑及精准提示词设计,从零入门AI Agent开发。
2026-01-05 20:05:43
968
原创 为什么大模型如此强大我们还要微调?程序员必收藏的微调详解
本文探讨了在大模型背景下微调的必要性与应用场景,详细解释了微调与提示词的本质区别("改造"vs"引导"),并通过实例介绍了意图识别、关键词抽取等微调任务的实践方法。文章强调了数据质量对微调效果的关键影响,指出当需要将模糊口语转化为稳定、低延迟的结构化输出时,微调是必要的工具。
2026-01-05 20:03:06
615
原创 【必学收藏】大模型架构深度解析:一文读懂自注意力机制原理与代码实现
文章详细解析了大语言模型的架构,重点介绍了自注意力机制的原理和实现过程。通过token解析器将文本转换为嵌入向量,Transformer块中的自注意力组件通过Query、Key、Value三个矩阵计算单词间的关联性,生成上下文向量。文章还提供了Python代码实现,帮助读者直观理解自注意力机制的工作原理,是掌握大模型核心技术的必备知识。
2026-01-05 20:00:00
507
原创 【干货收藏】RAG系统切片技术全攻略:决定检索效果上限的关键步骤
本文详细介绍了RAG系统中决定检索效果上限的关键环节——切片(Chunking)技术。文章阐述了切片的必要性,包括技术约束、检索效果和成本控制,并详细讲解了六种常见切片方法:固定长度、语义、结构化、重叠、递归和混合切片。最后提供了控制切片粒度、合理使用重叠和用指标评估等实战建议,强调RAG效果上限不在模型,而在切片的正确策略选择。
2026-01-04 10:55:58
991
原创 【必学收藏】大模型RAG技术演进:从基础检索到Graph-R1智能推理的完整指南
文章详解了大模型检索增强生成(RAG)技术的三大演进架构:基础RAG适合简单快速问答;Agentic RAG引入智能体能力,支持多步检索和跨源信息整合;Graph-R1融合知识图谱与强化学习,实现多跳推理和深度逻辑分析。选择何种架构应基于业务需求,未来AI将具备更强的认知与推理能力,成为真正的智能伙伴。
2026-01-04 10:47:37
776
原创 RAG系统掉链子?揭秘检索引擎工程黑盒(建议收藏)
文章解析了RAG系统中检索引擎的工程化实现,包括亿级向量索引架构(HNSW、IVF、DiskANN)、进阶检索技术(HyDE、Contextual Chunk Headers)、重排序算法和量化评估体系。强调检索引擎作为RAG系统的"大脑",其设计精细度直接影响系统性能上限,并提供生产级RAG检索技术清单,帮助开发者构建高效可靠的检索增强生成系统。
2026-01-04 10:44:11
864
原创 程序员必藏:大模型退潮,AI Agent崛起:把握AI未来发展趋势
文章指出AI正经历从"中心化大脑"向"分布式、具身化、规范化"的深层变革,到2026年将呈现四大转变:多智能体协同解决透明度问题;具身智能使AI理解物理世界;边缘推理实现本地化智能思考;全球AI规范化框架建立。这将使AI从"数字玩具"转变为渗入物理世界与行业逻辑的成熟生态,重塑技术格局。
2026-01-04 10:27:30
647
原创 【必学收藏】大模型知识增强技术:RAG与CAG原理与应用全解析
本文详细对比了大模型两种知识增强技术:RAG通过实时检索获取最新信息,适合动态知识场景但存在延迟;CAG预加载信息到缓存,响应快但知识易过时。文章解析了两者原理、优缺点及适用场景,提供了选型框架和行业应用案例,指出混合方案能兼顾信息时效性与响应效率,是未来发展方向。
2026-01-04 10:24:26
661
原创 【技术前瞻】大模型退潮,AI Agent崛起:2026年AI四大变革趋势详解(建议收藏)
文章讨论了AI到2026年的四个战略性转变:从单兵作战到多智能体协同,提高透明度和可靠性;具身智能让AI理解物理世界,通用人形机器人将量产;边缘侧推理使设备本地化思考,解决隐私和延迟问题;《欧盟AI法案》将规范AI研发,提高透明度和责任感。这些变化将使AI从"数字玩具"转变为真正融入物理世界的成熟技术体系。
2026-01-04 10:18:25
816
原创 大模型学习宝典:从历史脉络到核心技术,一篇掌握AI前沿,收藏不迷路
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
2026-01-02 09:15:00
1599
原创 【必收藏】CAP框架:AI智能体提示词设计的全维度指南,小白/程序员必学!
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。
2026-01-02 09:00:00
607
原创 收藏必备!RAPTOR:大模型RAG系统的智能索引优化技术全解析
在构建递归函数之前,我们需要定义 RAPTOR 中的“A”:抽象组件。这是一个机制,将相关的文本分块集群用 LLM 合成为单一的高质量摘要。这一步至关重要,因为它不仅仅提取信息;它创建新的更高层次知识。集群的摘要成为我们树的父节点,代表其所有子文档的精华。这是我们从具体细节上升到更广泛概念的方式。我们将为此创建一个简单的 LangChain Expression Language(LCEL)链。提示被设计为指示 LLM 扮演专家技术作者的角色,确保我们的摘要连贯、详细,并捕捉主要思想。# 定义总结链。
2026-01-02 08:45:00
1569
原创 【必学收藏】从零开始学企业AI:三阶六步大模型开发实践指南
文章提出企业AI和大模型落地的"三阶六步"方法论:第一阶段进行认知导入,建立AI基础认知;第二阶段打造标杆智能体应用,创造颠覆性价值;第三阶段进行蓝图规划、平台建设和场景运营,实现规模化应用。该方法论强调循序渐进,以业务价值为导向,避免"为AI而AI"的技术陷阱,帮助企业务实落地AI应用。
2026-01-02 08:30:00
892
原创 【必看收藏】提示词工程从小白到精通:解锁AI智能协作的完整指南
提示词工程是大型语言模型应用的关键技术,通过精心设计的指令序列引导AI输出高质量内容。文章系统解析了提示词的四大构成要素(背景信息、指令、输入数据、输出指示器)和七项设计原则,并介绍了思维链、ReAct等高级技巧。通过淘宝Agent和科研论文分析两大案例,展示了提示词工程如何将AI从工具升级为智能协作者,实现人机高效协作。
2026-01-02 08:15:00
1240
原创 【强烈收藏】解锁大模型长期记忆:TIM、CoPS、MaLP、MemoryBank和HippoRAG五大框架详解
本文系统介绍五种大语言模型长期记忆框架:TIM通过记忆内思考避免重复推理;CoPS结合认知记忆机制实现个性化搜索;MaLP采用双过程增强记忆优化医疗助手;MemoryBank引入艾宾浩斯遗忘曲线实现动态更新;HippoRAG受海马体理论启发,利用知识图谱和PageRank算法实现高效信息整合。这些框架旨在解决大模型长期记忆问题,提升交互能力与个性化服务水平。---
2026-01-02 07:45:00
1620
原创 【珍藏】解决AI“健忘“问题:8种大模型记忆技术详解,让你的智能体记住一切!
本文详细剖析了8种AI智能体记忆策略:全量记忆、滑动窗口、相关性过滤、摘要压缩、向量数据库、知识图谱、分层记忆和类OS内存管理。每种策略从原理、特点、适用场景和实现方法进行了分析,帮助开发者根据不同应用场景选择最合适的记忆方案。文章不仅提供了理论指导,还包含模拟代码实现,为解决大模型上下文限制和长期记忆问题提供了实用参考。
2026-01-01 09:00:00
1688
原创 【值得收藏】AI智能体架构设计12原则:让大模型从“玩具“变“生产力“
文章详解了构建生产级AI智能体的12条核心架构原则,围绕"感知-决策-执行"闭环,涵盖自然语言转结构化调用、提示词工程、上下文状态管理、工具设计、生命周期控制等关键领域。这些原则旨在帮助开发者设计出可用、可扩展、可维护的AI系统,将大模型从实验性工具转变为企业级生产力引擎,实现人机高效协作。
2026-01-01 08:45:00
1720
原创 LangChain从入门到精通,构建强大LLM应用的必学指南(建议收藏)
这是 LangChain 架构的基础,定义了所有组件的通用接口和交互标准,确保不同模块可无缝协作。BaseLanguageModel:统一各类 LLM(如 GPT、Claude、开源模型)的调用接口,屏蔽不同模型的底层差异。PromptTemplate:标准化提示词格式,支持动态填充变量(如用户输入、外部数据),确保输入一致性。BaseRetriever:定义检索接口,统一向量数据库(如 Pinecone、Milvus)、文档检索工具的调用逻辑。
2026-01-01 08:00:00
549
原创 【建议收藏】AI Agent:未来3-5年的技术核心,程序员必学技能
AI Agent是AI的升级版,具备感知、分析、决策和执行能力,由大模型、规划、记忆和工具组成。它使用门槛低,功能强大,能自主拆解任务并调用工具完成。尽管面临数据获取、多工具协同、信任和责任归属等挑战,但AI Agent发展潜力巨大,将重构多个行业和岗位。当下学习AI Agent技术对个人职业发展至关重要,建议抓住这一技术风口实现弯道超车。
2026-01-01 07:30:00
625
原创 【干货收藏】智能体(Agent)技术详解:从理论到实战,程序员必备AI技能
本文全面介绍了智能体(Agent)技术,特别是GUI智能体的最新发展。详细阐述了智能体的定义、分类与核心能力(理解、感知、规划、操作),分析了当前技术前沿如ComputerUse、SpiritSight和MobileFlow,探讨了在自动化测试、移动应用和桌面系统等场景的应用,并指出技术挑战与未来发展方向,包括自我改进、多模态融合和跨平台通用化等趋势。---
2025-12-31 08:15:00
1305
原创 【强烈收藏】大模型应用开发实战:从Prompt到Agent,助普通程序员轻松掌握AI技术
本文面向非AI背景开发人员,介绍大模型应用开发入门知识。文章详细阐述了Prompt Engineering、Function Calling、RAG等核心技术,探讨了AI Agent的实现方式和MCP协议在生态建设中的应用。作者强调,即使没有深厚AI和数学基础,开发者也能通过这些技术将大模型应用到实际业务中,提升效率,抓住AI时代发展机遇。
2025-12-31 08:15:00
1416
原创 【必看收藏】大模型个性化技术全面解析:从RAG到Agent的实现路径与实战指南
本文深入探讨大模型个性化技术,将模型预测与用户偏好保持一致为核心,通过显式画像、历史交互、用户内容和模拟用户等方式实现。详细解析了在RAG系统中个性化信息的三个引入阶段(预检索、查询、生成)及个性化智能体的构建。作者认为论文提供了有价值的实现思路,但对个性化剖析仍较粗,不同类型画像信息的利用价值各异,可借鉴推荐系统研究经验进一步深化。---
2025-12-31 08:00:00
1116
原创 收藏必备!CNN与Transformer四大融合方法详解:从串行到层级混合,一文掌握视觉模型前沿技术
CNN与Transformer融合是计算机视觉的重要研究方向。文章详细介绍了四种主流融合方法:串行式(CNN提取特征+Transformer建模)、并行式(双分支特征融合)、层级式(多层次混合架构)和模块替换法。各方法各有优缺点,层级式融合目前性能最佳,已成为视觉领域基石模型。选择融合方式需根据具体任务需求和计算资源权衡。
2025-12-31 07:45:00
677
原创 大模型Prompt工程完全指南:从入门到精通,收藏必备!
本文系统介绍了大模型Prompt工程的核心知识,包括Prompt定义与基本框架(RTF、思考链等)、打造高效Prompt的两大核心原则(明确指令和充足思考时间),以及15种实用Prompt技术(如零样本提示、思维链、RAG等)。文章强调掌握Prompt工程对释放AI大模型潜力的重要性,并提供学习资源,助力程序员和小白从零入门,提升业务价值。
2025-12-30 11:22:45
729
原创 【干货收藏】大模型架构设计全攻略:从数据接入到业务落地的完整解决方案
本文详细解析了AI大模型应用架构的五大核心层级:从多模态数据接入、预处理标准化,到知识模型中台构建,再到业务场景落地,最后到持续监控优化。通过分层剖析各模块设计思路与技术要点,为技术人员提供了一套从零搭建智能化系统的完整路线图,帮助大模型技术真正落地为业务驱动力。
2025-12-30 11:11:48
1073
原创 【建议收藏】国产大模型技术突破与学习资源全攻略
文章系统介绍大模型技术演进,重点阐述国产模型在中文理解、行业适配和推理效能三大优势,分析挑战与未来方向,并提供系统学习资源,帮助读者抓住AI机遇,从入门到实战掌握大模型技术。
2025-12-30 11:09:54
844
原创 【珍藏必备】大模型部署工具全景图:从小白到专家的五层架构系统指南
本文系统梳理了大模型部署的完整工具链,分为五层架构:硬件抽象层提供算力基础;通用计算框架如PyTorch作为模型构建的"操作系统";专用推理引擎如vLLM优化推理性能;部署与服务工具简化用户操作;模型分发平台如Hugging Face提供模型资源。随着技术发展,大模型部署门槛正在降低,未来将出现更多"全栈一体化"解决方案,让"运行私有大模型"变得像安装普通软件一样简单。
2025-12-30 11:05:36
538
原创 【必收藏】微软Agent Lightning框架:彻底解耦AI Agent与强化学习训练,让大模型学习更高效
微软推出的Agent Lightning框架实现了AI Agent与强化学习训练的完全解耦,解决了传统方法在复杂场景下表现不佳的问题。该框架通过统一数据接口和"Training-Agent"解耦架构,支持任何AI Agent的强化学习训练,无需修改代码即可提升性能。实验证明其在Text-to-SQL、RAG和数学问答等任务中均能稳定提升性能,有望成为AI Agent训练的新范式。
2025-12-30 10:38:22
1016
原创 【干货收藏】从零搭建RAG系统:数据处理、向量化与存储全流程解析
本文详细介绍了RAG系统中的数据处理与存储流程,包括数据来源与预处理、文档解析与清洗、文本切块策略、元数据标注、向量化处理以及向量存储与索引管理。文章强调了这一"基建环节"对RAG系统性能的决定性影响,提供了实用的技术选型和参数设置建议,介绍了Milvus、Qdrant等向量数据库工具,并附带大模型学习资源获取方式。
2025-12-30 10:35:56
896
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅