使用Ollama部署本地LLM:构建AI REST API的简易指南

利用Ollama本地LLM(大语言模型)搭建AI的REST API服务是一个实用的方法。下面是一个简单的工作流程。

1. 安装Ollama和LLMs

首先,在本地机器上安装Ollama和本地LLMs。Ollama可以帮助你轻松地在本地部署LLMs,并让它们更方便地处理各种任务。

安装 Ollama

Ollama安装界面

Ollama下载页面

file

安装应用文件

为Ollama安装LLMs

ollama pull llama3
ollama run llama3

下载并运行llama3

在本地与llama3对话

Ollama命令

可用的命令:
  /set         设置会话变量
  /show        显示模型信息
  /bye         退出
  /?, /help    帮助命令

使用 "" 开始多行消息

测试Ollama

curl http://localhost:11434/api/generate -d '{  
  "model": "llama3",  
  "prompt": "为什么天空是蓝色的?",  
  "stream": true  
}'

如果stream设置为false,响应将是一个完整的JSON对象。

curl http://localhost:11434/api/generate -d '{  
  "model": "llama3",  
  "prompt": "为什么天空是蓝色的?",  
  "stream": false  
}'

2. 设置FastAPI

接下来,设置一个Python的FastAPI应用。FastAPI是一个现代、快速(高性能)的Web框架,基于标准的Python类型提示,支持Python 3.7及以上版本。它是构建稳健高效API的理想选择。

编写FastAPI的路由和端点,以便与Ollama服务器进行交互。这个过程包括发送请求给Ollama以处理任务,比如文本生成、语言理解或其他LLM支持的AI任务。以下是一个简单的代码示例。

from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
import json
import requests

app = FastAPI(debug=True)

class Itemexample(BaseModel):
    name: str
    prompt: str
    instruction: str
    is_offer: Union[bool, None] = None

class Item(BaseModel):
    model: str
    prompt: str

urls = ["http://localhost:11434/api/generate"]

headers = {
    "Content-Type": "application/json"
}

@app.get("/")
def read_root():
    return {"Hello": "World"}

@app.post("/chat/{llms_name}")
def update_item(llms_name: str, item: Item):
    if llms_name == "llama3":
        url = urls[0]
        payload = {
            "model": "llama3",
            "prompt": "为什么天空是蓝色的?",
            "stream": False
        }
        response = requests.post(url, headers=headers, data=json.dumps(payload))
        if response.status_code == 200:
            return {"data": response.text, "llms_name": llms_name}
        else:
            print("错误:", response.status_code, response.text)
            return {"item_name": item.model, "error": response.status_code, "data": response.text}
    return {"item_name": item.model, "llms_name": llms_name}

测试REST-API服务

curl --location 'http://127.0.0.1:8000/chat/llama3' \
--header 'Content-Type: application/json' \
--data '{
  "model": "llama3",
  "prompt": "为什么天空是蓝色的?"
}'

通过API发送Curl请求

API日志

3. 部署

当你对REST API的功能和性能感到满意后,可以将此服务部署到生产环境。这可能涉及将其部署到云平台、使用Docker进行容器化,或者在服务器上部署。

在这个简单的示例中,我们通过使用Ollama进行本地LLM部署并结合FastAPI构建REST API服务器,创建了一个免费的AI服务解决方案。你可以通过自己的训练数据对模型进行微调以实现定制用途(我们将在未来讨论)。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

## 大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值