- 博客(558)
- 收藏
- 关注
原创 35岁程序员,想转行大模型,我应该怎么做?看完这一篇你就知道了!!
如果你是一个35岁的程序员,想要转行进入大模型领域,可以采取以下步骤来准备和规划:基础知识学习:首先,你需要掌握一些基础知识,如机器学习、深度学习、神经网络等。可以通过在线课程、书籍、研讨会等方式进行学习。例如,你可以学习TensorFlow、PyTorch等深度学习框架。
2025-05-16 11:00:11
146
原创 【AI大模型】别再堆文档了,大模型时代知识库应该这样建!看到就是赚到!!
有人说,大模型+知识库就是新一代的员工。可你有没有想过,如果你把一堆资料往员工桌上一扔,不教、不管,还想让他做出像样的工作,结果会如何?这是很多人现在“用知识库喂大模型”的真实写照。这篇文章是我在进行了数千小时的知识库实践后的一些思考:不仅告诉你“是什么”,更帮你弄明白“怎么做”。
2025-05-15 12:01:29
583
原创 【AI大模型】终于看到了靠谱的AI Agent落地场景!收藏!快收藏!!
Monica是一家快速发展的公司,你可能知道Manus,对就是这个产品的母公司,他们之前业务增长很快,但同时也面临着一个棘手的问题:用户留存率不够稳定。尽管产品一直在更新和优化,但用户流失率还是很高,尤其是在用户遇到问题时,没有及时有效的干预措施,导致很多用户取消订阅,流失率居高不下。
2025-05-15 11:30:54
516
原创 如何从零训练一个LLM:尝试基于0.5B小模型复现DeepSeek-R1的思维链
本文主要是以两个目的出发:第一个是简单地介绍下LLM训练的一个完整流程,侧重点在于帮助认识这个过程,而不是严谨地对每一个剖析细节,因此基本没有公式推导,但一些必要的符号是避免不了的;第二个是尝试使用小模型(0.5B)来复现DeepSeek-R1的思维链模式,仅仅是一个demo级别的实践。
2025-05-14 11:37:35
750
原创 从 0 到 1 玩转 AI 智能体:零基础搭建专属智能助手,解锁大模型实战新姿势!
而在 AI 大模型的发展进程中,智能体(Agent)作为一个新兴的概念,正逐渐崭露头角,成为 AI 领域的研究热点。智能体可以被看作是一种能够自主感知环境、做出决策并采取行动以实现特定目标的智能实体。它不仅仅是简单地执行预设的指令,更具备理解复杂任务、灵活应对环境变化的能力,就像是拥有了 “智慧的大脑”。
2025-05-14 10:55:07
667
原创 【AI大模型部署】本地部署大模型+OpenManus,试水AI Agent,小白教程,收藏这一篇就够了!!
由于个人工作环境时常需要在内网中,无法连接互联网调用满血模型,正好笔记本自备RTX4060,膨胀一下,本地部署玩玩。另外最近Manus很火,搞不上验证码也本地部署一下国人复刻的open Manus玩玩,体验一下Ai Agent 。部署环境:Windows 11,i9-13900H,48G内存,RTX4060 8G显存
2025-05-13 11:30:28
702
原创 【AI大模型】会解题不等于懂人心,腾讯混元提出Sentient Agent,提高高阶社交认知能力
为什么需要评估LLM的「社交智商」?过去我们评判LLM,就像考核“做题家”:会写代码、能答考题就是好学生。但现实中,当其成为心理咨询师、情感伴侣时,会解题不等于懂人心。传统评估方法(如Arena排行榜)只关注任务完成度,却无法判断模型是否真的让人感到被理解、被安慰。就像考试满分的学生,可能在社交中“把天聊死”。
2025-05-13 10:43:14
909
原创 【AI大模型】弹性Reasoning!通过控制预算和RL达到更短、更快、更强!!
如今的LLM在解决数学题、编程任务时,常常像“话痨”一样输出冗长的推理步骤。虽然这些步骤能提升准确性,但实际应用中却面临两大问题:资源浪费:生成几千甚至几万个token,消耗大量算力;不可控风险:如果强行限制输出长度,模型可能直接“摆烂”——答案不完整或错误率飙升。
2025-05-12 11:06:04
586
原创 【AI大模型】AI Agents入门教程之不同的开源智能体框架,小白收藏这一篇就够了!!
本文将重点评测LangGraph、Agno、SmolAgents、Mastra、Pydantic AI和Atomic Agents六大框架,并与CrewAI和AutoGen进行横向对比。我们将解析各框架的核心功能、设计理念以及技术路线等。2、 Agentic AI代理式人工智能(Agentic AI)的核心,是围绕大语言模型(LLM)构建系统,使其具备精准的知识储备、数据访问能力和执行功能。你可以将其理解为:用自然语言来自动化流程和任务。利用自然语言处理(NLP)实现自动化并非新鲜事——多年来我们
2025-05-12 10:15:27
541
原创 AI时代,天天被提到的Agent是什么?看完这一篇你就懂了!!
AI Agent(智能体)是能够感知环境、自主决策并执行动作的智能实体,它代表了AI从"被动回答"到"主动行动"的进化,正在成为大模型时代最受关注的应用形态之一。一、什么是AI Agent?1.1 基本定义AI Agent(人工智能代理)是一种能够感知环境、自主决策并执行动作的智能实体。与传统AI系统不同,Agent不仅能回答问题,还能主动完成一系列复杂任务。简单来说,如果把大语言模型(LLM)比作一个"超级大脑",那么AI Agent就是给这个大脑装上了"手脚"和"工具",让它能够像人类一样主
2025-05-11 08:00:00
658
原创 AI Agent:四大核心能力详解与技术演进,小白教程,建议收藏!
在人工智能领域的宏大版图中,智能体(Agent)正以迅猛之势,逐渐攀升至舞台的聚光灯下。当前技术收敛趋势表明,2025年将成为智能体突破「环境感知-自主决策-价值对齐」能力三角的关键里程碑——这不仅是底层技术栈的颠覆性迭代(多模态感知网络、神经符号推理架构、具身智能系统的深度融合),更预示着人机协作范式将进入「认知共生」的新纪元。科技巨头、开源社区与产业资本的竞逐布局(据Gartner预测,2025年全球智能体开发框架投入将突破270亿美元),折射出这场技术变革对全球数字生态的重构势能。当下,2025年被广
2025-05-10 11:57:44
588
原创 Qwen3 低成本手撕Search-R1的强化学习训练框架,建议收藏!!
OpenAI-o1和DeepSeek-R1,通过奖励驱动的学习,而无需依赖于明确的逐步监督,在逻辑推理和迭代推理方面取得了显著的成果。使用RL训练能够更有效地搜索相关信息的策略模型。例如,Search-R1、R1-Searcher和ReSearch等模型都尝试通过强化学习来提升模型的搜索能力。
2025-05-10 10:55:12
554
原创 中科院开源PPT Agent,一键自动生成PPT智能体
估计不少小伙伴一提到写PPT就头疼吧!写文案的时候,绞尽脑汁也想不出吸引人的内容,好不容易憋出几段话,总觉得干巴巴的毫无亮点。排版再好,过了一夜怎么看怎么别扭。所以,中国科学院软件研究所、中国科学院大学和上海捷心科技的研究人员联合开源了PPT Agent。PPT Agent可以像人类那样通过分析精美参考幻灯片,提取内容模式和布局结构,然后根据输入文档的内容,逐步编辑和优化幻灯片。同时还具备自我修正功能,确保生成的PPT在内容、设计和连贯性上都达到用户要求,极大节省时间和精力。
2025-05-09 11:42:23
1014
原创 【AI大模型】Qwen Agent | MCP & Function Calling流程解读,小白收藏这一篇就够了!!
今天给大家分享Qwen Agent中mcp & function calling调用的流程。通过分析调用流程,我们可以清楚地了解底层原理,了解输入输出如何适配工具调用。整体示意效果如下:
2025-05-09 10:45:25
809
原创 让 AI 更懂 Ant Design:MCP 协议在前端领域的落地实践,收藏这一篇就够了!!
当下 AI 盛行,层出不穷的大语言模型、IDE、Extension,其中热门的有 Chatgpt o3、Claude 3.7 Sonnet、Gemini 2.5 pro、Grok 3、Deepseek v3-0424、Cursor、Trae 国际版、Github Copilot、Cline,个人主要使用的是以下白嫖方案:Trae 国际版VS Code + ClineVS Code + Github Copilot - 学生版 结合上白嫖的 Gemini exp 版本、OpenRouter free
2025-05-08 12:00:39
826
原创 【模型微调】微调Qwen3-1.7b:小模型也能做好猫娘!建议收藏!!
微调Qwen3-1.7b:小模型也能做好猫娘,Qwen3 最近也挺火的,知乎一直在谈论小参数模型的作用是啥。所以我突发奇想,想用 Qwen3-1.7b 的小模型配合猫娘问答数据集草草训练一只猫娘,自我感觉效果不错。先来看一下微调效果。
2025-05-08 11:06:48
581
原创 AI大模型入门指南 - Fine-tuning:小白也能看懂的“模型微调”全解析,看到就是赚到!!
Fine-tuning(模型微调)到底是个啥? 模型微调是在预训练大模型(如DeepSeek、LLaMA、Qwen等)的基础上,用特定领域或任务的数据集对模型参数进行二次训练,让大模型“从通才成为专家”。预训练模型: 已在大规模无标注数据上学习通用特征(如语言规则、物体识别)。微调: 注入领域专属知识(如医疗术语、金融逻辑),使模型具备特定场景下的专业能力。
2025-05-07 11:42:31
825
原创 【AI大模型】大厂大模型必知的5种agent模式,收藏这一篇就够了!!
【AI大模型】大厂大模型必知的5种agent模式,收藏这一篇就够了!!用户输入查询:用户通过界面或API向agent发送一个查询请求。LLM生成初始输出:大型语言模型(LLM)接收用户的查询,并生成一个初步的响应。用户反馈:用户对初步的响应进行评估并给出反馈。
2025-05-07 10:34:05
814
原创 【AI大模型】从字节、百川、Bespoke Labs 3个大模型项目,看RL驱动下的Agent技术趋势
Agent的技术线路目前看业界大概两个方向:一类是模型厂商目标是把Agent能力内化到一套模型里去解决问题,让模型能力极大增强;另一类是Agent应用厂商,比如Manus、SparkGen,开源项目Agent S/S2等,考虑的方案是在用工程化方案,采用模块化架构,在核心模型之外构建独立的推理与工具调用能力。
2025-05-06 12:02:27
759
原创 如何使用Ollama在本地运行Qwen3并支持MCP和工具使用?看完这篇你就懂了!!
Qwen3是阿里巴巴Qwen团队最新发布的开源大语言模型,提供具有竞争力的性能,高度模块化和工具使用能力。在本指南中,我将向您展示如何通过Ollama在本地运行Qwen3,并启用MCP(模型上下文协议)工具功能,如代码解释器、网络获取和时间查询。
2025-05-06 11:03:19
1347
原创 【AI大模型】微调大模型需要多少GPU显存?看完这一篇你就知道了!!
如何估算微调(Fine-tuning)一个X B(比如X=1,即十亿)参数的大模型所需显存(VRAM)?精确估计比较难,因为它受到多种因素的影响。这里我们分全参数微调和LoRA微调两种情况来讨论,并给出估算方法和一些经验法则。
2025-05-05 11:56:22
848
原创 学术界重磅!RAG+Reasoning深度协同,解锁下一代RAG
RAG的发展伴随着LLM的革新而进步的。从发展的时间线上来看,可以分为基于提示的方法、基于微调的方法和基于强化学习的方法。自2025年以来, reasoning模型展示了其强大的推理能力,将检索能力与推理能力相结合,应该是下一代RAG的发展方向。
2025-05-05 11:06:28
820
原创 【AI大模型】 Langchain+DeepSeek R1从入门到精通,收藏这一篇就够了!!
LangChain 是一个专为构建基于大语言模型(LLMs)的应用而设计的强大框架。它可以帮助开发者高效地创建智能对话、搜索、数据处理、代码生成等 AI 相关应用。本文将从基础概念入手,逐步深入,帮助你全面掌握 LangChain 的核心能力。
2025-05-04 08:00:00
978
原创 什么是RAG?大模型和RAG有什么关系?看完这一篇你就懂了!!
在讲RAG之前,我们先说一个大模型的普遍现象,大家应该都用过大模型了,比如 ChatGPT、DeepSeek、豆包、文心一言等等…那么大家在用的时候其实会发现,有时候大模型会乱回答,一本正经地胡说八道,语义不同,前言不搭后语。举个例子:你问大模型,美国成立时间。 大模型可能会回答:美国成立在1997年,距离现在已有400年的历史…这种现象叫hallucination,幻觉。大模型本质的就是不断的预测下一个生成的文字应该是什么,而选择预测概率中最大的一个。
2025-05-03 08:00:00
611
原创 工具调用×大模型思考=超级智能体:ReAct 策略如何改变AI能力,看完这一篇你就懂了!!
想象一下,如果普通AI是一个只会机械执行指令的机器人,那么采用ReAct策略的智能体就像是一个会先思考后行动的侦探。在解决问题时,它不会匆忙跳入结论的深渊,而是沿着"观察-思考-行动-观察"的螺旋阶梯,一步步接近真相。这就是ReAct(Reasoning + Acting)策略的魅力所在。
2025-05-02 08:00:00
895
原创 Dify MCP 插件指南:一键连接 Zapier,轻松调用 7000+ App 工具
2025 年可谓“Agent 元年”。随着 AI Agent 的快速发展,如何让 LLM 以统一、标准的方式与外部应用交互已成为关键议题。在这之前,Anthropic 于 2024 年底推出了模型上下文协议(MCP)。作为一项新兴的开放协议,MCP 为 LLM 与外部应用之间构建了双向通信通道,就像是 AI 的“USB-C”接口,帮助模型发现、理解并安全调用各种外部工具或 API。
2025-05-01 08:00:00
691
原创 多模态RAG:解读检索、重排、精炼三大关键技术
多模态检索的三个关键组件包括:检索器(retriever)、重排序器(reranker)和精炼器(refiner)。
2025-04-30 11:24:46
781
原创 Qwen3-代码能力非常强悍,0.6B模型竟然比Gemma4B模型还要强
你没看错,千问3(Qwen3)的这次更新不是一个模型,而是一堆模型,Dense模型一共6款,大小从0.6B到32B不等;MoE混合专家模型有两个,30B和235B。我上手就先用235B这个旗舰版测试了一下代码性能,用的是这个Prompt:
2025-04-30 10:17:31
754
原创 【AI大模型】别搞 GraphRAG 了,拥抱新一代 RAG 范式 DeepSearcher
采用传统的 RAG 方法应付差事?它只能帮你解决信息检索的问题尝试 GraphRAG?老板还期望能结合知识图谱与大模型生成的新高度不得不说,近期 Open AI 推出的 Deep Research(深度研究)功能,确实能在短时间内满足老板的高要求。通过融合大模型、超级搜索与研究助手于一体的 Deep Research,
2025-04-29 11:53:13
816
原创 【AI大模型】关于RAG应用中怎么高质量的进行数据召回——召回策略的研究
“ 数据召回是RAG技术的重要领域,而不同的召回策略甚至会产生完全不同的效果。”RAG技术的核心原理很简单,本质上就是在外部维护一个资料库,在进行大模型问答之前,先从资料库中找到相关的内容,然后一起输入到大模型中。但由于文档的复杂性,在进行文档处理时很难真正做到高质量的数据处理;因此,在做数据召回时就会面临着各种各样的问题。所以,怎么进行高质量的数据召回,就成为RAG必须要研究的一个课题;而今天,我们就来简单介绍一下常见的几种召回策略。
2025-04-29 10:49:14
1017
原创 深入浅出大模型:预训练、监督微调、强化学习、RLHF,收藏这一篇就够了!!
2025年年初随着DeepSeek的爆火,人们对LLM(Large Language Model,大语言模型)兴趣与日激增,很多人觉得LLM常常显得近乎魔法般神奇。接下来我们就来揭开LLM的神秘面纱。我想退一步,拆解一下LLM的基本原理——深入探讨这些模型是如何构建、训练和微调,最终成为我们今天所使用的AI系统的。
2025-04-28 11:34:24
982
原创 【AI大模型】使用 LangChain + Higress + Elasticsearch 构建 RAG 应用
RAG(Retrieval Augmented Generation,检索增强生成) 是一种结合了信息检索与生成式大语言模型(LLM)的技术。它的核心思想是:在生成模型输出内容之前,先从外部知识库或数据源中检索相关信息,然后将这些信息作为上下文输入给生成模型,从而提升生成内容的准确性、时效性和相关性。
2025-04-28 11:06:11
820
原创 源码角度解读RAKG文档级图谱构建框架RAKG及Demo级多模态RAG-NoOCR
本文来看两个问题:一个是RAG用于文档级别图谱构建框架RAKG拆解,从架构和代码拆解两个方面来看,看具体实现。另一个是多模态RAG小Demo之NoOCR实现拆解,看看响亮口号之下是如何简陋的实现,这样能够加深印象,从代码出发理解会更加具象化。
2025-04-27 11:02:10
942
原创 【AI大模型】GraphRAG最新成果:基于图的RAG统一框架深度分析,看到就是赚到!!
基于图的检索增强生成(RAG)已被证明在将外部知识整合到大型语言模型(LLMs)中非常有效,提高了它们的事实准确性、适应性、可解释性和可信度。文献中提出了一些基于图的RAG方法。然而,这些方法尚未在同一实验设置下得到系统和全面的比较。本文首先从高层次的角度总结了一个统一的框架,以整合所有基于图的RAG方法。然后,我们广泛比较了一系列问答(QA)数据集上有代表性的基于图的RAG方法——从具体问题到抽象问题——并检验了所有方法的有效性,提供了对基于图的RAG方法的彻底分析。作为我们实验分析的副产品,我们还能够通
2025-04-27 10:20:00
622
原创 【保姆级教程】DeepSeek R1+RAG,基于开源三件套10分钟构建本地AI知识库
DeepSeek是杭州深度求索公司开源出来的AI大模型,在一些典型的应用场景,比如智能对话、文本生成、计算推理、代码生成等场景,表现都非常不错。它有两款大模型,目前在全球都很受关注,分别是 DeepSeek-V3 和 DeepSeek-R1 两个大版本。DeepSeek 在综合能力方面,跟国外 OpenAI o1 版本大模型的性能,基本不相上下。不管是训练成本,还有使用成本,都远低于国外同类型的大模型,可以说是好用又便宜。
2025-04-26 08:00:00
782
原创 【喂饭级教程】Dify v1.1.0接入这个开源LLM,知识库效果直接起飞,真可以封神了!
minimax-01居然能凭一己之力,完全拯救dify的原生知识库!我之前看了两篇针对dify知识库的"曲线救国" 文章,一篇是外接fastgpt,一篇是外接ragflow这两个方案虽然都能达到目的,但都需要额外维护一套平台,终究还是比较麻烦。今天这个方案仅需接入一个开源模型,可以说是最简单,效果最直接的了。
2025-04-25 10:50:41
636
原创 LLM Agent也能通过RL学会「思考」和「自我进化」吗?看完这一篇你就懂了!!
Agent也需要『思考』和「自我进化」?比如你教一个小孩玩游戏——不是一次教完所有步骤,而是让他自己摸索,通过多次尝试和失败来学习。这篇论文的核心,就是让AI像人类一样,在多轮互动中自我进化。
2025-04-25 09:55:07
564
原创 我不信看完这篇你还不懂RAG:RAG技术概述,建议收藏
检索增强生成(Retrieval Augmented Generation),简称 RAG。它旨在通过在生成回答前主动检索相关信息,将实时、准确的知识作为上下文提供给模型,从而显著提升了回答的质量和可靠性。
2025-04-24 11:29:01
784
原创 【AI大模型】也看图结构增强的GraphRAG方案:NodeRAG实现思路解读
关于GraphRAG,已有很多的工作,例如,如NaiveRAG和HyDE;基于图的RAG方法,如GraphRAG和LightRAG,可以再温习下。朴素RAG,这种方法通常是作为所有现有RAG系统的标准基线。它首先将输入文档分割成几个文本块,并利用文本嵌入将它们编码进向量空间。然后基于查询表示的相似性检索相关文本块。
2025-04-24 10:30:41
879
原创 【AI大模型】RAG 实践- Ollama+MaxKB 部署本地知识库,建议收藏!
本文我们介绍另外一种部署本地知识库的方案:Ollama + MaxKB相对来说,容易安装且功能较完善,30 分钟内即可上线基于本地大模型的知识库问答系统,并嵌入到第三方业务系统中。缺点是如果你的电脑配置不高,问题回答响应时间较长。
2025-04-23 19:33:34
757
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人