【AI大模型】 Langchain+DeepSeek R1从入门到精通,收藏这一篇就够了!!

前言

LangChain 是一个专为构建基于大语言模型(LLMs)的应用而设计的强大框架。它可以帮助开发者高效地创建智能对话、搜索、数据处理、代码生成等 AI 相关应用。

本文将从基础概念入手,逐步深入,帮助你全面掌握 LangChain 的核心能力。

1. LangChain 简介

1.1 什么是 LangChain?

LangChain 是一个 Python 和 JavaScript(TypeScript)库,旨在简化 LLM 的开发流程。它主要提供以下功能:

  • LLM 封装:支持 OpenAI、Anthropic、Google Gemini、本地 LLM(如 Llama、ChatGLM、DeepSeek、QianWen)
  • Prompt 模板:管理和优化 Prompt 设计
  • 记忆(Memory):让 LLM 具有“短期记忆”能力
  • 链(Chains):将多个调用组合成复杂任务
  • 代理(Agents):让 LLM 具备自主决策能力,调用 API、搜索信息
  • 工具(Tools):与外部系统交互,如数据库、搜索引擎、Python 代码执行
  • 文档加载 & 知识库:集成向量数据库,如 FAISS、Chrome、Weaviate、Pinecone 等

2. 安装与环境配置

2.1 安装 LangChain

pip install langchain langchain_community

如果你要使用本地模型:

pip install langchain_ollama

2.2 配置 API Key

如果使用 OpenAI,需要设置 API Key:

import osos.environ["OPENAI_API_KEY"] = "your-api-key"

本文使用的是本地部署的DeepSeek R1大模型,不需要配置API Key。

3. 快速入门:使用 LLM 进行简单对话

3.1 调用 本地部署DeepSeek R1

from langchain_ollama import ChatOllamafrom langchain.schema import HumanMessage
# 初始化 LLM 实例,指定模型(例如:deepseek-r1:7b)llm = ChatOllama(model="deepseek-r1:7b")
# 构造一条用户消息并发送给 LLMresponse = llm([HumanMessage(content="你好,LangChain 是什么?")])
# 输出 LLM 的回复 print(response.content)

4. Prompt 设计与优化

4.1 使用 Prompt 模板

from langchain.prompts import PromptTemplate
template = PromptTemplate(    input_variables=["name"],    template="你好 {name},请介绍一下 LangChain。")
prompt = template.format(name="小明")print(prompt)

5. Memory:让对话具有记忆

from langchain.memory import ConversationBufferMemoryfrom langchain.chains import ConversationChainfrom  langchain_ollama import ChatOllama
llm = ChatOllama(model="deepseek-r1:7b")memory = ConversationBufferMemory()  # 使用内存缓冲区记录对话conversation = ConversationChain(llm=llm, memory=memory)
# 第一轮对话,模型记住用户信息print(conversation.predict(input="你好,我叫小明。"))
# 第二轮对话,模型可以回忆用户先前的内容print(conversation.predict(input="我刚才说我叫什么名字?"))

6. Chains:组合多个 LLM 调用

from langchain.chains import LLMChainfrom langchain.prompts import PromptTemplatefrom langchain_ollama import  ChatOllama
template = PromptTemplate(    input_variables=["question"],    template="请用简洁的方式回答:{question}")
llm = ChatOllama(model="deepseek-r1:7b")chain = LLMChain(llm=llm, prompt=template)response = chain.run("LangChain 可以做什么?")print(response)

7. Agents:让 AI 具备决策能力

from langchain.agents import AgentType, initialize_agentfrom langchain.tools import Toolfrom langchain_ollama import ChatOllama

def get_weather(location: str):    return f"{location} 的天气是晴天,气温 25°C"

weather_tool = Tool(name="Weather", func=get_weather, description="提供天气信息")
agent = initialize_agent(    tools=[weather_tool],    llm=ChatOllama(model="deepseek-r1:7b"),    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,    verbose=True)
response = agent.run("广州的天气如何?")print(response)

8. 知识库:向量数据库检索

8.1 加载文档并转换为向量

from langchain.document_loaders import TextLoaderfrom langchain.text_splitter import CharacterTextSplitterfrom langchain.vectorstores import FAISSfrom langchain.embeddings.openai import OpenAIEmbeddings
loader = TextLoader("example.txt")documents = loader.load()
splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)texts = splitter.split_documents(documents)
vectorstore = FAISS.from_documents(texts, OpenAIEmbeddings())query = "LangChain 是什么?"retrieved_docs = vectorstore.similarity_search(query)print(retrieved_docs[0].page_content)

9. LangChain 在实际项目中的应用场景

  1. 智能客服系统(结合 Memory & Agents)
  2. AI 搜索引擎(结合 知识库 & 向量数据库)
  3. 自动化办公助手(结合 LangChain Tools & Agents)
  4. 代码生成 & 调试助手(结合 LLM & Prompt Engineering)
  5. 金融、法律文档问答系统(结合 RAG 检索增强生成)

10. 进阶优化:LangChain 加载 本地 LLM,不通过ollama代理

如果你想用 本地 LLM(如 ChatGLM、Llama2),可以使用 llama-cpp-python:

pip install llama-cpp-python

案例:

from langchain.llms import LlamaCpp
llm = LlamaCpp(model_path="path/to/llama2.gguf", n_ctx=2048)response = llm("请介绍一下 LangChain")print(response)

11. 结合 Web 应用:LangChain + FastAPI

from fastapi import FastAPIfrom langchain_ollama import ChatOllama
app = FastAPI()llm=ChatOllama(model="deepseek-r1:7b")
@app.get("/chat")def chat(query: str):    return {"response": llm.predict(query)}

启动命令:

uvicorn main:app --reload

12. 结合 Vue3/Flutter 构建 LangChain 前端应用

Vue3 案例

这个示例是一个单文件组件,它包含一个输入框、一个按钮和一个显示回复的区域。用户输入问题后,点击按钮即可调用后端 API 获取回复。

<template>  <div class="app">    <h1>LangChain Chat</h1>    <input type="text" v-model="query" placeholder="输入你的问题..." />    <button @click="sendQuery">发送</button>    <p v-if="response">AI 回复:{{ response }}</p>  </div></template>
<script>import { ref } from 'vue';
export default {  name: "LangChainChat",  setup() {    const query = ref('');    const response = ref('');
    const sendQuery = async () => {      if(query.value.trim() === '') return;      try {        const res = await fetch(`http://127.0.0.1:8000/chat?query=${encodeURIComponent(query.value)}`);        const data = await res.json();        response.value = data.response;      } catch(e) {        response.value = "请求出错:" + e.message;      }    }
    return {      query,      response,      sendQuery    }  }}</script>
<style>.app {  max-width: 600px;  margin: 0 auto;  padding: 2em;  font-family: Arial, sans-serif;}
input {  width: calc(100% - 100px);  padding: 0.5em;  margin-right: 10px;}
button {  padding: 0.5em 1em;  cursor: pointer;}
p {  margin-top: 20px;  font-size: 1.1em;  color: #333;}</style>

Flutter 案例

下面的 Flutter 示例展示了一个简单的应用,包含一个文本输入框、一个按钮和一个显示回复的区域。点击按钮后,应用通过 HTTP 请求 FastAPI 接口,并在界面上展示 AI 回复。

import 'package:flutter/material.dart';import 'package:http/http.dart' as http;import 'dart:convert';
void main() => runApp(LangChainChatApp());
class LangChainChatApp extends StatelessWidget {  @override  Widget build(BuildContext context) {    return MaterialApp(      title: 'LangChain Chat',      theme: ThemeData(        primarySwatch: Colors.blue,      ),      home: ChatScreen(),    );  }}
class ChatScreen extends StatefulWidget {  ChatScreen({Key? key}) : super(key: key);
  @override  _ChatScreenState createState() => _ChatScreenState();}
class _ChatScreenState extends State<ChatScreen> {  final TextEditingController _controller = TextEditingController();  String _response = '';  bool _loading = false;
  Future<void> _sendQuery() async {    final query = _controller.text;    if(query.isEmpty) return;
    setState(() {      _loading = true;      _response = '';    });
    final url = 'http://127.0.0.1:8000/chat?query=${Uri.encodeComponent(query)}';
    try {      final response = await http.get(Uri.parse(url));      if (response.statusCode == 200) {        final data = json.decode(response.body);        setState(() {          _response = data['response'];        });      } else {        setState(() {          _response = '请求失败,状态码:${response.statusCode}';        });      }    } catch (e) {      setState(() {        _response = '请求错误:$e';      });    }
    setState(() {      _loading = false;    });  }
  @override  void dispose() {    _controller.dispose();    super.dispose();  }
  @override  Widget build(BuildContext context) {    return Scaffold(      appBar: AppBar(        title: Text('LangChain Chat'),      ),      body: Padding(        padding: const EdgeInsets.all(16.0),        child: Column(          children: [            TextField(              controller: _controller,              decoration: InputDecoration(                labelText: '输入你的问题',                border: OutlineInputBorder(),              ),            ),            const SizedBox(height: 10),            ElevatedButton(              onPressed: _loading ? null : _sendQuery,              child: _loading                   ? CircularProgressIndicator(color: Colors.white)                   : Text('发送'),            ),            const SizedBox(height: 20),            if (_response.isNotEmpty)              Text(                'AI 回复:\n$_response',                style: TextStyle(fontSize: 16),              ),          ],        ),      ),    );  }}

总结

  • LangChain 是一个强大的 AI 框架,适用于 LLM 应用开发。
  • 重点掌握 Prompt 设计、Memory、Chains、Agents、知识库(向量数据库)。
  • 结合 FastAPI、Vue3、Flutter,可以打造 AI 助手、搜索引擎、智能客服等应用。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值