前言
LangChain 是一个专为构建基于大语言模型(LLMs)的应用而设计的强大框架。它可以帮助开发者高效地创建智能对话、搜索、数据处理、代码生成等 AI 相关应用。
本文将从基础概念入手,逐步深入,帮助你全面掌握 LangChain 的核心能力。
1. LangChain 简介
1.1 什么是 LangChain?
LangChain 是一个 Python 和 JavaScript(TypeScript)库,旨在简化 LLM 的开发流程。它主要提供以下功能:
- LLM 封装:支持 OpenAI、Anthropic、Google Gemini、本地 LLM(如 Llama、ChatGLM、DeepSeek、QianWen)
- Prompt 模板:管理和优化 Prompt 设计
- 记忆(Memory):让 LLM 具有“短期记忆”能力
- 链(Chains):将多个调用组合成复杂任务
- 代理(Agents):让 LLM 具备自主决策能力,调用 API、搜索信息
- 工具(Tools):与外部系统交互,如数据库、搜索引擎、Python 代码执行
- 文档加载 & 知识库:集成向量数据库,如 FAISS、Chrome、Weaviate、Pinecone 等
2. 安装与环境配置
2.1 安装 LangChain
pip install langchain langchain_community
如果你要使用本地模型:
pip install langchain_ollama
2.2 配置 API Key
如果使用 OpenAI,需要设置 API Key:
import osos.environ["OPENAI_API_KEY"] = "your-api-key"
本文使用的是本地部署的DeepSeek R1大模型,不需要配置API Key。
3. 快速入门:使用 LLM 进行简单对话
3.1 调用 本地部署DeepSeek R1
from langchain_ollama import ChatOllamafrom langchain.schema import HumanMessage
# 初始化 LLM 实例,指定模型(例如:deepseek-r1:7b)llm = ChatOllama(model="deepseek-r1:7b")
# 构造一条用户消息并发送给 LLMresponse = llm([HumanMessage(content="你好,LangChain 是什么?")])
# 输出 LLM 的回复 print(response.content)
4. Prompt 设计与优化
4.1 使用 Prompt 模板
from langchain.prompts import PromptTemplate
template = PromptTemplate( input_variables=["name"], template="你好 {name},请介绍一下 LangChain。")
prompt = template.format(name="小明")print(prompt)
5. Memory:让对话具有记忆
from langchain.memory import ConversationBufferMemoryfrom langchain.chains import ConversationChainfrom langchain_ollama import ChatOllama
llm = ChatOllama(model="deepseek-r1:7b")memory = ConversationBufferMemory() # 使用内存缓冲区记录对话conversation = ConversationChain(llm=llm, memory=memory)
# 第一轮对话,模型记住用户信息print(conversation.predict(input="你好,我叫小明。"))
# 第二轮对话,模型可以回忆用户先前的内容print(conversation.predict(input="我刚才说我叫什么名字?"))
6. Chains:组合多个 LLM 调用
from langchain.chains import LLMChainfrom langchain.prompts import PromptTemplatefrom langchain_ollama import ChatOllama
template = PromptTemplate( input_variables=["question"], template="请用简洁的方式回答:{question}")
llm = ChatOllama(model="deepseek-r1:7b")chain = LLMChain(llm=llm, prompt=template)response = chain.run("LangChain 可以做什么?")print(response)
7. Agents:让 AI 具备决策能力
from langchain.agents import AgentType, initialize_agentfrom langchain.tools import Toolfrom langchain_ollama import ChatOllama
def get_weather(location: str): return f"{location} 的天气是晴天,气温 25°C"
weather_tool = Tool(name="Weather", func=get_weather, description="提供天气信息")
agent = initialize_agent( tools=[weather_tool], llm=ChatOllama(model="deepseek-r1:7b"), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
response = agent.run("广州的天气如何?")print(response)
8. 知识库:向量数据库检索
8.1 加载文档并转换为向量
from langchain.document_loaders import TextLoaderfrom langchain.text_splitter import CharacterTextSplitterfrom langchain.vectorstores import FAISSfrom langchain.embeddings.openai import OpenAIEmbeddings
loader = TextLoader("example.txt")documents = loader.load()
splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)texts = splitter.split_documents(documents)
vectorstore = FAISS.from_documents(texts, OpenAIEmbeddings())query = "LangChain 是什么?"retrieved_docs = vectorstore.similarity_search(query)print(retrieved_docs[0].page_content)
9. LangChain 在实际项目中的应用场景
- 智能客服系统(结合 Memory & Agents)
- AI 搜索引擎(结合 知识库 & 向量数据库)
- 自动化办公助手(结合 LangChain Tools & Agents)
- 代码生成 & 调试助手(结合 LLM & Prompt Engineering)
- 金融、法律文档问答系统(结合 RAG 检索增强生成)
10. 进阶优化:LangChain 加载 本地 LLM,不通过ollama代理
如果你想用 本地 LLM(如 ChatGLM、Llama2),可以使用 llama-cpp-python:
pip install llama-cpp-python
案例:
from langchain.llms import LlamaCpp
llm = LlamaCpp(model_path="path/to/llama2.gguf", n_ctx=2048)response = llm("请介绍一下 LangChain")print(response)
11. 结合 Web 应用:LangChain + FastAPI
from fastapi import FastAPIfrom langchain_ollama import ChatOllama
app = FastAPI()llm=ChatOllama(model="deepseek-r1:7b")
@app.get("/chat")def chat(query: str): return {"response": llm.predict(query)}
启动命令:
uvicorn main:app --reload
12. 结合 Vue3/Flutter 构建 LangChain 前端应用
Vue3 案例
这个示例是一个单文件组件,它包含一个输入框、一个按钮和一个显示回复的区域。用户输入问题后,点击按钮即可调用后端 API 获取回复。
<template> <div class="app"> <h1>LangChain Chat</h1> <input type="text" v-model="query" placeholder="输入你的问题..." /> <button @click="sendQuery">发送</button> <p v-if="response">AI 回复:{{ response }}</p> </div></template>
<script>import { ref } from 'vue';
export default { name: "LangChainChat", setup() { const query = ref(''); const response = ref('');
const sendQuery = async () => { if(query.value.trim() === '') return; try { const res = await fetch(`http://127.0.0.1:8000/chat?query=${encodeURIComponent(query.value)}`); const data = await res.json(); response.value = data.response; } catch(e) { response.value = "请求出错:" + e.message; } }
return { query, response, sendQuery } }}</script>
<style>.app { max-width: 600px; margin: 0 auto; padding: 2em; font-family: Arial, sans-serif;}
input { width: calc(100% - 100px); padding: 0.5em; margin-right: 10px;}
button { padding: 0.5em 1em; cursor: pointer;}
p { margin-top: 20px; font-size: 1.1em; color: #333;}</style>
Flutter 案例
下面的 Flutter 示例展示了一个简单的应用,包含一个文本输入框、一个按钮和一个显示回复的区域。点击按钮后,应用通过 HTTP 请求 FastAPI 接口,并在界面上展示 AI 回复。
import 'package:flutter/material.dart';import 'package:http/http.dart' as http;import 'dart:convert';
void main() => runApp(LangChainChatApp());
class LangChainChatApp extends StatelessWidget { @override Widget build(BuildContext context) { return MaterialApp( title: 'LangChain Chat', theme: ThemeData( primarySwatch: Colors.blue, ), home: ChatScreen(), ); }}
class ChatScreen extends StatefulWidget { ChatScreen({Key? key}) : super(key: key);
@override _ChatScreenState createState() => _ChatScreenState();}
class _ChatScreenState extends State<ChatScreen> { final TextEditingController _controller = TextEditingController(); String _response = ''; bool _loading = false;
Future<void> _sendQuery() async { final query = _controller.text; if(query.isEmpty) return;
setState(() { _loading = true; _response = ''; });
final url = 'http://127.0.0.1:8000/chat?query=${Uri.encodeComponent(query)}';
try { final response = await http.get(Uri.parse(url)); if (response.statusCode == 200) { final data = json.decode(response.body); setState(() { _response = data['response']; }); } else { setState(() { _response = '请求失败,状态码:${response.statusCode}'; }); } } catch (e) { setState(() { _response = '请求错误:$e'; }); }
setState(() { _loading = false; }); }
@override void dispose() { _controller.dispose(); super.dispose(); }
@override Widget build(BuildContext context) { return Scaffold( appBar: AppBar( title: Text('LangChain Chat'), ), body: Padding( padding: const EdgeInsets.all(16.0), child: Column( children: [ TextField( controller: _controller, decoration: InputDecoration( labelText: '输入你的问题', border: OutlineInputBorder(), ), ), const SizedBox(height: 10), ElevatedButton( onPressed: _loading ? null : _sendQuery, child: _loading ? CircularProgressIndicator(color: Colors.white) : Text('发送'), ), const SizedBox(height: 20), if (_response.isNotEmpty) Text( 'AI 回复:\n$_response', style: TextStyle(fontSize: 16), ), ], ), ), ); }}
总结
- LangChain 是一个强大的 AI 框架,适用于 LLM 应用开发。
- 重点掌握 Prompt 设计、Memory、Chains、Agents、知识库(向量数据库)。
- 结合 FastAPI、Vue3、Flutter,可以打造 AI 助手、搜索引擎、智能客服等应用。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
