前文
使用大模型的最重要的一步就是编写好的提示词 prompt
,但是 prompt 既容易被低估
也容易被高估
。被低估是因为设计良好的提示词可以显著提升效果。被高估是因为即使是基于提示的应用也需要大量的工程工作才能使其发挥作用。下面我会介绍在编写 prompt 的时候,有助于提升性能的技术点。
明确定义助手功能
一般我们会给大模型定义一个助手角色基调
,简要明确告诉它需要做的任务是什么即可,只要框定助手要干的事情边界,不至于跑偏即可。比如可以告诉大模型是一个精通撩妹的高手。
提出详细的要求
我们在这里可以详细描述助手具体要干的事情,以及需要注意的点。内容一定要精简不啰嗦
,要点一定要分步罗列清楚
,前后文的描述中不允许有冲突
的地方,否则很容易在推理阶段让大模型不知所措。简要明了的任务要求描述,能让大模型更好的执行任务,减少误差或者歧义。例如:你想撩妹但是你无房无车无存款等要求。
使用 RAG
如果我们有可以获取的外部知识
也可以加入到提示词中,这里有助于模型减少出现幻觉的可能,让它的回答能更加真实可靠有依据。比如我们现在有一个《如何撩妹.txt》 ,我们放入向量库,在针对不同问题的时候召回相应的 doc 喂给大模型,提升其撩妹的能力。有外部的知识可用,这比大模型空想瞎想如何撩妹靠谱的多。
需要注意的是单纯使用向量召回
可能效果很差,我们可以结合传统的 BM25
的方式进行关键词的 doc 召回,最后得到的 doc 相对来说会有用的多。在大多数情况下,混合搜索是非常有效的:关键词搜索用于明显关键词的匹配,而向量召回用于同义词、上位词和拼写错误,以及多模态的信息召回。
做好 few-shot
一般我们会给大模型一些例子,这些例子要有代表性,基本上能把你的任务中的常见情况和特殊情况都覆盖即可,一般 5 个左右足够了,复杂任务可以适当增多。好的例子能大幅度提升大模型对于任务的理解和推理能力。
使用思维链 CoT
如果你还不知道什么是思维链
,可以先看[这里]了解一下。我们在遇到推理等复杂任务的时候,可以在给出例子中引导大模型一步一步去抽丝剥茧理解问题并解决问题,例如下面让大模型进行算数解答的问题,如果是常规的左边的方式直接给出答案,那就很有可能是错的。如果像右边你能在给出的例子中详细阐述解题思路,最后模型也会在推理的时候一步一步给出思考过程,得到的答案比前一种方式对的可能性更高。
输入和输出结构化
一般我们的输入都是夹在 prompt 中的进行提问的,而输出的内容我们需要提取有效的信息,我一般都有自己的特殊符号,定义了合适的输入和输出格式,有利于我们生成美观的 prompt 和获取有效的信息。
尽量做好一件事
随着业务要求的增多,有的人巴不得想让大模型一次能干好多事情,处理更多边缘情况,复杂性就会增加,更多的指令,更多步骤推理,再加上几十个例子,以至于最后 prompt 又臭又长,这种是最忌讳的,出错的可能性极大。还不如拆解一下,每次写的 prompt 能干好一件事情。
实战
我们上面的理论也讲了很多,下面就让我们结合上面的知识实战一把。下面的例子比较简单,大家理解要领即可。
<定义角色功能和要求>
你是一名精通撩妹的高手,擅长用幽默、浪漫的话语和机智的对话打动女性。
你的目标是通过不花钱的方式,在一周之内找到一位25岁左右的富婆美女。
你可以参考一本《如何撩妹》的书籍内容来帮助你实现这个目标。
<输入的参数、内容、其他要求>
女孩的名字:{name}
女孩的特征:{traits}
要求:
1. 不能花钱。
2. 在一周内找到25岁左右的富婆美女。
3. 根据《如何撩妹》的书籍内容给出撩妹的策略及话术。
<输出内容及格式>
请按照下面的格式输出相关内容:
撩妹策略: {strategy}
撩妹话语: {pickup_line}
例子1
输入:
女孩的名字:美玲
女孩的特征:25岁,富婆,喜欢艺术品,热爱社交
要求:
1. 不能花钱。
2. 在一周内找到25岁左右的富婆美女。
3. 根据《如何撩妹》的书籍内容给出撩妹的策略及话术。
输出:
撩妹策略:<这里其实就是思维链的过程,教你如何具体实施的步骤>
1. 从《如何撩妹》书中提取关于喜欢艺术品和社交技巧的美女的内容。
2. 在社交媒体上找到美玲,并关注她的动态,尤其是她参加的艺术展览和社交活动。
3. 在她经常出现的艺术展览和社交场合中偶遇,展示出对艺术品的浓厚兴趣。
4. 使用幽默和机智的对话技巧,逐步引起她的注意和兴趣。
撩妹话语:<输出得到的话术>
美玲,你的艺术品收藏让我想起一句话:真正的艺术不仅仅是摆在展厅里的作品,而是懂得欣赏它的人。和你聊艺术,每一次都像是一场精彩的展览,让人流连忘返。
例子2
输入:
女孩的名字:莉莉
女孩的特征:25岁,富婆,喜欢高尔夫,热爱健身
要求:
1. 不能花钱。
2. 在一周内找到25岁左右的富婆美女。
3. 根据《如何撩妹》的书籍内容给出撩妹的策略及话术。
输出:
撩妹策略:<这里其实就是思维链的过程,教你如何具体实施的步骤>
1. 从《如何撩妹》书中提取关于喜欢运动和健身的美女的内容。
2. 在高尔夫球场和健身房中寻找机会接近莉莉。
3. 主动参与她的健身或高尔夫活动,展示你的运动能力和健康生活方式。
4. 使用幽默和鼓励的话语,增进彼此的互动和了解。
撩妹话语:<输出得到的话术>
莉莉,你的挥杆动作真是优雅又有力量,每一次都让我觉得高尔夫不只是运动,更是一种艺术。我觉得,和你一起运动,不仅能锻炼身体,更能享受每一刻的美好时光。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓