- 博客(2217)
- 收藏
- 关注
原创 揭秘大模型概念与应用:探讨其在不同场景下的落地实践
大模型是什么?大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊的硬件加速技术。大模型的设计和训练旨在提供更强大、更准确的模型性能,以应对更复杂、更庞大的数据集或任务。
2024-08-28 11:26:39
1506
1
原创 医疗与大模型:重塑未来医疗生态的营销之道
医疗与大模型的结合正成为行业发展的重要趋势。面对这一机遇和挑战并存的局面,我们应积极拥抱变革、勇于创新实践。通过精准定位、打造案例、拓展合作和创新模式等多种手段相结合的方式,共同推动医疗大模型在行业的广泛应用和普及发展。那么,我们该如何学习大模型?作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。至于能学习到多少就看你的学习毅力和能力了。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
2024-06-13 13:38:20
2834
1
原创 30岁程序员转型焦虑?收藏这份AI大模型学习路线,技术躺平两不误
30岁程序员面临职业抉择:选择考公等"铁饭碗"回老家,还是借助AI大模型提升技术能力。文章建议:1)考公、事业编、教师编等稳定职业,但竞争激烈;2)掌握AI大语言模型技术,可显著提升开发效率,缓解职业焦虑。作者指出,AI正在改变编程模式,并提供详细的学习资源和实战案例。针对技术一般的程序员,建议结合自身倾向(如追求安逸或继续发展)做出选择,同时强调技术更新对职业发展的重要性。文末附赠104G大模型学习资料包,包含视频教程、技术文档等全套资源。
2026-01-27 15:20:45
877
原创 大模型时代高薪不内卷:AI风口已至,程序员必看学习指南
AI领域人才缺口大,岗位薪资远超传统行业30%-50%,涵盖技术、管理及业务赋能等方向。文章指出,掌握AI技术对职业发展至关重要,建议从基础入手建立行业认知,提前储备AI能力提升竞争力。作者分享了一套104G的AI大模型学习资源包,包含视频教程、学习路线、电子书籍等,适合不同基础的学习者。资料由行业专家整理,旨在帮助从业者转型或提升技能,应对AI时代的职业挑战。
2026-01-27 15:19:25
352
原创 Agent开发本质揭秘:将人类任务理解转化为AI执行过程的三大范式
Agent开发是将人类任务理解转化为AI可执行流程的过程,主要包含三种范式:1)工作流编排(结构化执行,适用于清晰任务);2)ReAct范式(迭代推理循环,适合不完整理解场景);3)Vibe Coding(代码即行动,适应频繁变化需求)。工作流编排分为预定义流程和动态规划流程,ReAct通过观察-思考-行动循环决策,Vibe Coding则让AI直接生成代码解决问题。不同范式对应不同任务理解程度,开发者需根据场景特点选择合适的开发方式。
2026-01-27 15:17:45
394
原创 GKG-LLM大模型框架实现知识图谱、事件图谱与常识图谱统一构建
GKG-LLM创新性地提出三阶段课程学习框架,实现知识图谱、事件图谱和常识图谱的统一构建。通过"基础知识→动态知识→常识泛化"的渐进式学习,在29个数据集的15个子任务上显著提升性能,尤其在分布外数据展现强大泛化能力。该方法突破传统分离式构建模式,提高参数效率,为知识工程领域提供新范式,具有重要科研价值和广泛应用前景。
2026-01-27 15:16:43
432
原创 本体工程:企业AI Agent避免失败的语义层解决方案
企业AI Agent面临语义理解困境,现有Skills/RAG和Workflow方案存在局限性。文章提出引入本体(Ontology)作为企业"语义层",通过结构化表达业务概念、关系和规则,构建统一的知识理解框架,减少AI误解与幻觉,实现可解释的复杂业务推理。本体被视为企业AI的"数字孪生",可解决语义不一致、推理能力不足等问题。文章将介绍本体的6个核心构建模块,为企业构建可靠AI Agent提供新思路。
2026-01-27 15:13:26
281
原创 大模型应用开发面经:阿里腾讯等10家大厂面试真题与技巧_大模型应用开发面经
本文分享了作者面试阿里、腾讯等10家大厂的大模型应用开发经验。总结了大模型面试特点:问题多围绕RAG、微调等实际应用,较少复杂八股文。强调了掌握微调原理和实践经验的重要性,并提供了面试技巧、offer谈判经验和详细面试题库。同时提供了从入门到进阶的大模型学习资源包,包含视频教程、技术文档和面试指南,适合准备大模型应用开发的求职者参考。
2026-01-26 23:11:26
782
原创 收藏这份AI技术图解!从Transformer到智能体设计的全面指南
本文通过图解方式系统讲解AI核心技术,包括Transformer与MoE架构对比、LLM微调技术(LoRA系列)、RAG系统演进(传统/Agentic/Corrective)、智能体设计模式与等级划分,以及MCP、A2A等新兴协议标准。内容涵盖大模型关键技术,以直观动图解析复杂概念,适合技术人员学习参考。
2026-01-26 23:04:48
393
原创 GraphRAG:让 RAG 看见“关系网络“的技术进化
GraphRAG是RAG技术的革命性进化,通过构建知识图谱和社区发现,使AI从"翻书找词"升级为"全知视角"。它解决了传统RAG无法理解实体关系的局限,能处理复杂关系分析和全局总结。尽管构建成本更高,但在需要关系理解、多跳推理的场景中表现优异。对于关系密集的知识库,GraphRAG是实现"既见木又见林"的理想选择。
2026-01-26 23:01:46
437
原创 Skills:大模型智能体的元认知与决策逻辑
《Skills:构建大模型智能体的认知方法论》 摘要: Skills是一种超越传统MCP工具和Prompt指令的大模型智能体构建方法,通过三层认知架构实现智能体自主决策能力:(1)元认知层定义智能体身份、核心价值和能力边界;(2)决策逻辑层将隐式决策显式化、结构化;(3)问题解决螺旋形成"尝试→失败→分析→切换策略"的进化闭环。不同于简单工具调用或指令执行,Skills通过"超越并包含"原则将Prompt提升为完整认知模型,使AI具备自我修正能力。该方法通过结构化决策
2026-01-26 23:00:17
459
原创 揭秘AI产品真相:那些高大上组件只是大模型的“小助手“ | 小白入门指南
本文通过"智能办公室"的生动比喻,阐释了AI产品中Agent、RAG、Function Calling和MCP等组件与大模型的关系。这些组件本质上都是辅助工具:Agent负责任务拆解协调,RAG专注信息检索,Function Calling执行具体操作,MCP则规范信息格式。它们本身不具备推理能力,所有智能判断都来自大模型这个核心引擎。文章强调,企业级AI产品不应过度依赖大模型,而需认清这些组件仅是桥梁角色,真正决定产品质量的关键仍在于大模型的推理能力。
2026-01-26 22:59:18
496
原创 程序员必看!LoRA大模型微调技术详解:从概念到实践的收藏级教程
LoRA技术通过低秩分解模拟参数变化,冻结预训练模型参数仅训练少量新增矩阵,实现高效微调。其核心思路是在原模型旁增加低秩旁路(先降维A再升维B),训练时仅更新A/B矩阵。LoRA具有节省存储、不增加推理延迟、可组合等优点,适合资源有限场景。关键参数包括rank(4-8效果最佳)、alpha(建议等于rank)等。虽然训练速度较慢且效果略逊于全参数微调,但LoRA通过可插拔式设计实现了任务快速切换,是大模型轻量化微调的重要方法。
2026-01-25 19:12:52
595
原创 大语言模型(LLM)学习原理深度解析:从超级学生到词语社交网络
摘要: 文章将大语言模型(LLM)比作"超级学生",通过三步学习语言:1) 词元化将文字转为数字编码;2) 构建词语关系网,统计词汇关联概率(如"苹果"与"水果"关联强);3) 概率接龙预测最可能的下一个词。LLM并非记忆固定答案,而是学习语言模式和思维结构(如议论文框架、代码逻辑)。理解其原理有助于更有效地使用AI工具,解答"AI如何工作"的疑问,适应智能时代的教育需求。(150字) 关键点: 类比学习过程(词元化→社交网络→
2026-01-25 19:11:55
452
原创 AI驱动的动态调度:从理论到实践,程序员必备的智能制造核心技能(建议收藏)
摘要:制造业正经历从大批量生产向多品种小批量模式的转变,传统静态调度难以应对市场不确定性。AI驱动的动态调度通过实时感知、策略演化和闭环调节实现"持续协同",推动制造系统从"计划驱动"转向"事件驱动"。这一变革不仅是技术升级,更需管理思维从确定性转向不确定性共存,涉及组织结构和评价体系的重构。动态调度对提升产业链响应能力、支撑中国制造业高质量发展具有战略意义,其落地需以数据治理为基础,采取渐进式突破路径。该转型本质是制造系统获得"自我调节
2026-01-25 19:10:33
544
原创 AI工程师必看!X-Distill技术详解:让机器人仅需10条数据就能学会复杂操作,建议收藏学习!
《X-Distill:突破机器人视觉的"数据悖论"》提出了一种创新的跨架构知识蒸馏技术,通过两步法解决机器人视觉中的数据稀缺问题。该方法先在ImageNet上将大型ViT的视觉知识蒸馏到小型CNN中,再针对具体机器人任务微调,仅需10条演示数据就能掌握书写、抓取等复杂技能。实验证明,在34个模拟任务和5个真实任务中,这种1100万参数的紧凑模型不仅超越传统CNN,甚至优于直接微调的大型ViT和依赖3D点云的方法。研究揭示了在数据稀缺场景下,具有强归纳偏置的小型CNN比大型模型更具优势,为
2026-01-25 19:09:33
562
原创 NeurIPS 2025多模态表征学习新突破:4篇论文详解
本文介绍了2025年NeurIPS会议上的4篇多模态表征学习论文,分别探讨了有限数据场景下的多模态对齐(STRUCTURE)、模态错位的理论价值、特征因果分解(FCD)方法以及通过视觉嵌入蒸馏(VisPer-LM)提升MLLM视觉感知能力。这些创新方法为解决多模态学习中的数据稀缺、噪声干扰和视觉感知不足等关键挑战提供了新思路,在医疗、生物等专业领域具有重要应用价值。
2026-01-25 19:08:38
561
原创 AI产品经理vs传统产品经理:大模型时代必备技能与学习路线
本文详细介绍了AI产品经理与传统产品经理的区别,强调"懂技术"是AI产品经理的必要条件。文章阐述了AI产品经理的职责、类型(软件/硬件产品经理)、必备技能(技术能力、数据分析、业务sense)以及成为路径。最后提供了AI大模型学习路线,包括提示词工程、RAG系统、智能体开发等内容,适合小白和程序员系统学习大模型应用与产品开发。
2026-01-24 19:44:49
653
原创 大模型训练项目如何落地:完整流程与实战技巧
本文详解大模型训练三阶段(预训练、SFT微调、强化学习)及AI训练师工作。重点讲解项目落地流程:需求承接、标注规则制定(安全性、指令遵循、准确性等维度)、数据筛选与标注管理、质量控制与迭代。以SFT项目为例,从背景分析到规则实施,提供完整执行指南,助力从业者掌握大模型训练项目实操技能。
2026-01-24 19:43:47
406
原创 知识图谱如何提升大模型性能?WeKnora实现原理与代码解析
WeKnora提出了一种基于知识图谱增强大语言模型检索能力的GraphRAG方案。该系统采用LLM驱动实体和关系抽取技术,构建文档块关系网络,通过PMI+Strength混合算法计算关系权重。相比传统RAG,GraphRAG支持多跳推理和间接关联查询,显著提升了检索效果和知识关联性。系统架构包含实体抽取、关系抽取、权重计算和Chunk图谱构建四个核心模块,采用并发处理提高效率,并提供可视化展示功能。关键技术包括基于LLM的实体识别与去重、关系抽取与合并,以及文档块间的关联网络构建,有效解决了复杂查询中的多步
2026-01-24 19:41:25
592
原创 收藏级干货:DeepSeek Engram架构解析:大模型语言理解的新思路
DeepSeek与北大联合发布的Engram架构创新性地将语言理解分解为"推理"和"知识"两部分。该架构采用2-Grams/3-Grams分词和Multi-Head Hash存储短语,通过Context-aware Gating机制解决多义词问题。其核心价值在于将传统模型中用于"组合固定短语"的大量算力转移到"逻辑推理"上,显著提升计算效率。工程实现上,Engram可预计算访问槽位,将大表存放于CPU内存,大幅降低计算成本。虽然
2026-01-24 19:40:26
556
原创 大模型微调完全指南:从时机选择到数据策略,非常详细收藏我这一篇就够了
大模型微调指南 本文系统阐述了大模型微调的关键要素: 微调时机:当Prompt优化无效、需固定格式输出或模型蒸馏时考虑微调 微调范式:提示词、预训练-微调、预训练-指令微调三种模式 数据要求: 质量重于数量(2000-10000条) 需结构化指令-响应对格式 采用平衡采样和预置数据混入策略 强调质量保障和迭代优化 文章还对比了不同优化手段的优缺点,并提供了完整的大模型学习资源包获取方式。
2026-01-24 19:38:49
537
原创 Java程序员转行大模型开发全攻略:附CSDN独家学习资料包_大模型应用开发学习路线
Java程序员转型大模型开发指南 本文为Java开发者提供AI大模型转型的完整路径,包含五大学习步骤:1)掌握机器学习基础;2)熟练使用TensorFlow/PyTorch框架;3)强化编程能力;4)补充高等数学知识;5)参与实战项目。文章指出Java开发者在工程化实施方面的独特优势,并详细列举AI工程师、数据工程师等7类新兴高薪岗位。同时提供四阶段进阶路线:从基础应用到模型训练,最终实现商业闭环,并附赠CSDN独家学习资料包(含640份行业报告、200本专业书籍及实战教程),助力开发者把握AI时代机遇,完
2026-01-21 21:02:48
1036
原创 LangChain记忆管理:构建智能体连续性的关键技术(值得收藏)
摘要: LangChain框架通过分层记忆治理机制提升智能体交互能力。短期记忆基于Thread和Checkpointer维持单次会话连贯性,将对话状态持久化存储;长期记忆通过Store接口实现跨会话用户偏好沉淀,使用Namespace隔离数据。文章通过代码示例展示了两种记忆实现方式:短期记忆示例使用InMemorySaver存储会话状态,长期记忆示例通过工具读写InMemoryStore实现用户偏好管理。记忆治理是智能体实用化的关键,需平衡连贯性、个性化和可持续性,短期记忆确保对话流连贯,长期记忆支持跨会话
2026-01-21 21:01:21
524
原创 大模型提示词工程完全指南:16种核心技巧让你从“高级搜索“到“AI大师“
本文系统梳理了16种大模型提示词工程技巧,分为基础框架、逻辑增强、任务拆解、精准控制和进阶调教五大模块。从零样本提示、角色设定到思维链、自洽性过滤等高级方法,每种技巧都配有原理说明和实用案例。文章指出这些技巧可组合使用,核心在于通过逻辑引导而非依赖AI自主理解,帮助用户从基础使用者进阶为AI高效驾驭者。还提供了完整的大模型学习路径和资源包,涵盖从系统设计到商业化落地的全流程。
2026-01-21 21:00:18
607
原创 AI开发新趋势:低代码平台完全指南(Dify/n8n/Coze)- 程序员必学
低代码AI平台正引领应用开发新范式,使非技术背景人员也能参与构建。Dify、n8n和Coze三大平台各有侧重:Dify适合企业级应用,n8n擅长工作流自动化,Coze专注于快速原型与跨平台部署。未来趋势是平台专业化,成熟组织常采用多平台融合策略。平台素养将成为AI从业者核心技能,强大的低代码平台正使工程在更高抽象层级上发挥作用。
2026-01-21 20:59:09
546
原创 金融大模型落地提速170%,2025前三季度数据揭秘银行、证券、保险应用趋势与厂商竞争格局
摘要:2025年前三季度金融行业大模型应用显著增长,中标项目数量同比增长170%,金额增长298%。银行是主要采购方,占比51.1%,算力类项目金额占比最高。应用场景集中于智能客服、知识问答等领域,智能体项目仍处探索阶段。百度、火山引擎、科大讯飞位列市场前三,竞争格局激烈。报告显示大模型在金融领域的商业化落地持续深化,但技术成熟度仍需提升。
2026-01-21 20:58:03
553
原创 大模型应用开发工程师年薪破百万!掌握RAG+Agent+微调三大核心能力,抓住2025年AI最大风口
摘要:2025年AI行业最大机遇在应用层,大模型开发工程师供不应求,平均月薪达7.8万元。企业急需掌握RAG(知识增强)、Agent智能体和模型微调三大核心能力的人才。文章提供从零基础到精通的大模型学习路径,涵盖基础理论、RAG开发、Agent设计等模块,适合应届生、转行者和传统开发者。当前AI岗位缺口达47万,初级工程师平均薪资28K,通过系统学习可实现薪资翻倍。资料包含大厂实战案例、提示词模板库等资源,帮助抓住AI风口实现高薪就业。(149字)
2026-01-20 16:56:13
980
原创 100道大模型/AI产品经理面试题全解析,助你轻松通关
本文系统整理了100道AI产品经理面试题及解答思路,涵盖基础认知和实战能力两大维度。基础部分深入解析AI/AIGC概念、行业应用、大模型原理及提示词工程等核心知识;实战部分聚焦AI应用开发、RAG系统构建、产品设计等实操场景。内容全面覆盖AI产品经理所需知识体系,从理论到实践提供系统指导,既可作为面试准备资料,也能为实际工作提供参考。文章还包含大模型选型、微调技巧、幻觉问题处理等专业内容,并推荐了国内外主流大模型及特点分析,帮助读者快速掌握AI产品经理的核心能力。
2026-01-20 16:54:55
520
原创 转型AI产品经理必看指南:从0到3W+月薪的成长路径,建议收藏!
本文分享了转型AI产品经理的五大必备能力:AI产品基础能力、技术理解与工具使用、业务与场景洞察、伦理与限制认知、实战积累。作者通过近4年转型经历,强调需掌握AI产品设计方法论、数据处理工具、业务理解及多方协调能力,建议通过实际项目积累经验,避免盲目跟风进入AI领域。
2026-01-20 16:51:10
559
原创 【AI开发者收藏】大模型训练核心技术:5种学习范式与数据处理指南
文章系统介绍了大模型训练的五大学习方法:有监督、无监督、自监督、半监督和强化学习,详细阐述了各类学习原理与适用场景。同时深入探讨了数据预处理技术、质量评估标准及Scaling Laws三要素平衡扩展规律,强调了数据质量与多样性对模型性能的关键影响,为开发者提供了完整的大模型训练方法论与开源数据资源指南。
2026-01-20 16:50:14
659
原创 RAG技术深度剖析:让大模型拥有‘实时知识‘的检索增强生成指南
RAG(检索增强生成)技术通过结合信息检索与文本生成,有效解决大模型的知识局限、信息过时和幻觉问题。其核心流程包括:知识库构建(数据准备、文本分割、向量化)、检索召回(查询编码、相似性搜索)和模型生成(提示构建、答案生成)。关键技术包括语义切片优化检索质量、query expansion提升召回效果,以及生成阶段的验证机制。尽管面临检索质量依赖、复杂文档处理等挑战,RAG通过动态注入外部知识显著提升了回答的准确性和可解释性。该技术正推动AI岗位需求爆发,相关人才薪资达30K+。
2026-01-20 16:40:51
616
原创 传统产品经理转型AI PM的完整指南,非常详细收藏我这一篇就够了
传统产品经理转型AI PM指南:强调理解AI能力而非编写代码。文章从认知重塑、技能树重构到实战路径三方面展开,通过小红书文案生成器案例,展示从基础Prompt到Few-Shot和RAG思维的进阶过程,提供低代码构建Demo方法,帮助快速掌握AI产品管理能力。
2026-01-18 17:26:18
872
原创 大模型技术全景图:从理论到应用,一篇全掌握!建议收藏
大模型技术框架与应用发展 本文系统梳理了大模型技术体系,从神经网络基础(CNN、RNN、Transformer等)到预训练、微调及多模态扩展。针对大模型知识更新慢、领域适应性差等瓶颈,提出RAG技术、提示词工程和智能体(Agent)等解决方案,通过外部工具整合实现复杂任务处理。学习大模型需掌握模型架构、训练优化、知识增强等全栈技术,是一个持续迭代的过程。当前大模型人才缺口显著,系统化学习成为把握AI时代机遇的关键。(149字) 注:精简了技术细节描述,突出核心框架、应用方案和学习路径,保留数据佐证行业趋势,
2026-01-18 17:25:03
626
原创 多模态大模型架构深度解析:模块化vs原生架构工作原理全解析
多模态大模型的发展趋势聚焦于消除模态间的翻译障碍,实现AI对物理世界的直觉性理解。文章对比了两种主流架构:模块化架构依赖连接器转译视觉信息为文本Token,如LLaVA和BLIP-2;原生架构(如GPT-4o)则通过端到端训练共享底层逻辑,实现跨模态原生处理。核心在于图像Token化技术(ViT/VQ-VAE)将连续像素转化为离散序列,使Transformer能统一处理多模态数据。模块化架构需分阶段训练对齐特征,而原生架构通过Next-Token Prediction实现无缝理解。最终目标是通过统一数学语义
2026-01-18 17:23:44
600
原创 30岁转行AI大模型:从零基础到高薪算法工程师的完整攻略_30岁转行AI大模型,刚好赶上风口!
一位30岁从业者分享从传统行业成功转型AI大模型领域的经验。文章详细介绍了学习路径(Python、机器学习、Transformer架构)、实战项目(智能客服系统、开源贡献)和面试技巧,强调该领域更看重能力而非科班背景。作者指出AI大模型是未来趋势,人才缺口大,现在正是入局良机,并提供了学习资源包帮助读者转型。文章鼓励读者突破年龄限制,抓住风口机遇,通过系统学习和项目实践实现职业转型。
2026-01-16 16:10:30
687
原创 构建智能Agent的三大支柱:上下文工程、会话管理与记忆系统
Google白皮书《Context Engineering: Sessions, Memory》提出通过上下文工程、会话管理和记忆系统三大核心方法构建有状态的LLM智能体。上下文工程动态组装相关信息,解决LLM无状态限制;会话管理保存对话历史和工作记忆,实现连贯交互;记忆系统持久化关键信息,支持个性化体验。三者协同突破单次调用限制,使智能体具备记忆、学习和适应能力,开启有状态AI新范式。白皮书详细阐述了架构设计、实施策略及生产部署建议,为开发者提供系统指导。
2026-01-16 16:09:22
517
原创 AI Agent记忆系统完全指南:从入门到精通,打造高智能应用(建议收藏)
记忆系统是构建高智能AI Agent的核心技术,分为短期记忆(单次会话数据)和长期记忆(跨会话用户偏好与领域知识)。文章详解了记忆系统架构、主流框架集成方式、上下文工程策略及长期记忆技术实现,并分析了行业发展趋势。通过记忆系统,AI Agent能实现类人记忆能力,提升交互连贯性与个性化水平,是推动智能体向自主智能演进的关键基础设施。
2026-01-16 16:07:30
631
原创 AI智能体+大模型:项目管理新范式从“人控流程“到“智能协同“的革命
项目管理正经历从"人控流程+工具协助"到"AI智能协同+人类监督决策"的范式转变。AI智能体与大语言模型(LLM)通过自然语言处理、任务自动分解、风险预测等能力,成为项目经理的"数字同事"和"智能管家"。它们不仅能理解非结构化需求、生成文档,还能主动分析项目数据,提供实时建议和风险预警。相比传统自动化工具,AI智能体具备更高的自主性和灵活性,可实现多智能体协同工作,显著提升项目透明度与协同效率,缩短项目周期。这一变革将项目经理从
2026-01-16 16:03:02
686
原创 RAG技术实战:让大模型告别“胡言乱语“,程序员必学收藏
RAG(检索增强生成)技术通过结合语言模型与信息检索,有效解决大模型知识过时、幻觉和专业数据不足的问题。其核心流程包括知识库创建、向量化处理、相似度检索和提示词生成,最终由大模型整合输出结果。文章通过Python代码示例展示了RAG的实现过程,并对比了有无RAG的效果差异。该技术在动态更新知识、提升回答准确性方面优势明显,尤其适用于需要实时数据的垂直领域,但也面临数据质量、处理效率等挑战。
2026-01-16 16:00:18
666
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅