自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2276)
  • 收藏
  • 关注

原创 揭秘大模型概念与应用:探讨其在不同场景下的落地实践

大模型是什么?大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域,大模型通常是指具有数百万到数十亿参数的神经网络模型。这些模型需要大量的计算资源和存储空间来训练和存储,并且往往需要进行分布式计算和特殊的硬件加速技术。大模型的设计和训练旨在提供更强大、更准确的模型性能,以应对更复杂、更庞大的数据集或任务。

2024-08-28 11:26:39 1515 1

原创 医疗与大模型:重塑未来医疗生态的营销之道

医疗与大模型的结合正成为行业发展的重要趋势。面对这一机遇和挑战并存的局面,我们应积极拥抱变革、勇于创新实践。通过精准定位、打造案例、拓展合作和创新模式等多种手段相结合的方式,共同推动医疗大模型在行业的广泛应用和普及发展。那么,我们该如何学习大模型?作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。至于能学习到多少就看你的学习毅力和能力了。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

2024-06-13 13:38:20 2844 1

原创 2026最新!人工智能领域大模型学习路径、大模型使用、大模型学习路径:小白也能收藏的AI进阶秘籍!

本文详细介绍了学习大模型的技术路径,分为基础、进阶、实战和高阶拓展四个阶段。基础阶段重点在于数学、编程和机器学习基础;进阶阶段深入学习Transformer架构、预训练与微调技术;实战阶段通过NLP和CV项目应用所学知识;高阶拓展则涉及模型微调、部署与优化。文章还提供了丰富的学习资源和推荐工具,帮助读者系统掌握大模型技术,适合想要入门或进阶的程序员学习。

2026-02-17 19:03:32 570

原创 大模型落地企业场景:收藏这份宝藏指南,小白程序员必看!

大型企业AI落地选择多样,火山引擎、腾讯云等提供文本、图像生成等十大核心能力及应用领域。百度智能云、华为等也在积极布局。垂类厂商如中关村科金在知识密集型场景率先规模化落地,推动智能客服、知识库问答等效率提升。大模型技术在企业核心运营环节的应用将加速产业升级。

2026-02-17 19:02:13 322

原创 工行大模型进展:算力、模型与应用场景全面突破,小白程序员必看!大模型落地500+场景

工行在AI大模型领域取得重大进展,包括算力提升、多模态模型构建及智能体平台建立。该行已将大模型应用于30多个业务领域,超过500个场景,并在对客服务上取得突破,成为首批大模型对客试点机构。工行通过构建安全风险管控体系,实现了大模型对客服务的落地。对于想要了解和学习大模型的程序员和小白来说,这是一个值得收藏和关注的技术发展案例。

2026-02-17 19:01:11 192

原创 AI应用开发工程师岗位解析与学习路线,小白程序员轻松入门大模型开发:你的进阶学习路线图

本文详细介绍了AI应用开发工程师的职责与要求,强调其工程实现与商业价值转化核心。文章提供从Python编程、大模型API调用到提示词工程、AI框架应用的学习路线,建议通过项目驱动入门,逐步深入算法基础与工程化部署。特别适合后端开发者转型,助你抓住AI大模型风口,实现技能提升与职业发展。

2026-02-16 16:58:08 977

原创 看这行情,大模型今年真要起飞了,大模型浪潮来袭!小白程序员必备:收藏这份高薪入门指南!

2024年中国大模型市场规模达294.16亿元,预计2026年将突破700亿元。阿里、字节跳动、科大讯飞等企业引领行业发展,人才需求旺盛,薪资待遇优厚。OfferShow提供最新招聘信息、薪资爆料及求职福利,助力求职者把握大模型行业机遇。

2026-02-16 16:57:06 560

原创 大模型Agents开发:小白程序员必备的实用构建指南(收藏版)

本文介绍了构建高效大模型Agents系统的核心设计理念,强调“实用优先、简洁可控、按需适配”。核心原则包括:最小复杂度优先,架构按需匹配,模块化可组合,透明可控为基,人机协同赋能。推荐从简单的增强型LLM开始,逐步根据需求选择提示词链、路由、并行化等workflows模式,或构建自主Agents。文章还提供了工具Prompt engineering的优化建议,强调清晰、周全的工具设计对提升系统可靠性和可维护性的重要性。

2026-02-16 16:55:56 510

原创 2026年大模型产品经理转型指南:AI产品经理转行大模型必备指南,技能、评估与学习路径全解析

摘要: 本文为AI产品经理转行做大模型提供实用指南,从基本素质评估到具体学习路径,系统梳理了关键步骤。核心内容包括:1)转行需具备的技术理解、数据分析、用户洞察、产品设计及团队协作能力;2)通过兴趣、数据处理、需求洞察等维度自我评估适配性;3)推荐论文、视频及实践平台(如GPT-3论文、Hugging Face、Google Colab)等学习资源;4)强调通过目标制定和实践项目寻找大模型应用场景。全文旨在帮助产品经理快速定位方向,实现职业转型。

2026-02-15 19:30:16 846

原创 DeepSeek官宣支持100k token上下文!编程小白必看,V4强势来袭,速来收藏!

DeepSeek官网及APP更新,支持最高100万token上下文,引发用户热议。V4版本传闻即将到来,编程能力或超Claude、ChatGPT。V4将在编程能力、超长上下文代码处理、算法提升及推理能力上实现突破,改变游戏规则。全网期待值拉满,坐等DeepSeek V4上线。

2026-02-15 19:28:57 536

原创 DeepSeek 大模型性能优化实践:吞吐量提升 8-20 倍,小白也能学会!

本文研究了DeepSeek-V3.2和DeepSeek-R1在NVIDIA GB300(Blackwell Ultra)平台上的部署性能。通过NVFP4量化技术,DeepSeek-R1在EP2配置下实现22476 TGS的Prefill吞吐量,混合场景达3072 TGS;DeepSeek-V3.2在TP2配置下Prefill吞吐量7360 TGS。相比Hopper系列,Blackwell在Prefill阶段提升8倍,混合场景提升10-20倍。文章详细分析了NVFP4+TP2组合的优势,并比较了EP2与TP2

2026-02-15 19:27:50 853

原创 程序员转行为什么这么难,大模型时代:小白程序员逆袭指南,收藏这份进阶资源包!

本文探讨了程序员在大模型时代的转型挑战,分析了路径依赖、成本、技能缺乏和他人期望等因素如何阻碍转型。同时,文章提出了解决方案,强调学习大模型技术的重要性,并提供了一套完整的《AI大模型零基础入门+进阶学习资源包》,包括学习路线、报告合集、经典书籍和实战案例,帮助读者系统学习,抓住大模型时代的机遇。

2026-02-14 15:53:10 832

原创 小白程序员轻松入门PageIndex,掌握大模型在长文档推理检索中的新范式

PageIndex框架创新性地解决了传统RAG在专业长文档处理中的痛点,通过构建层级树索引和推理式检索机制,在金融文档问答中达到98.7%的高准确率。该方案摒弃了向量数据库,保留文档自然结构,采用LLM驱动的树搜索方式实现可解释性强的精准检索。文章详细解析了PDF处理流水线、树结构数据模型和推理检索机制三大核心模块,展示了其无需向量计算、支持递归细分和透明检索路径的技术优势。这一架构显著降低了基础设施成本,简化部署流程,特别适合财报、法规等专业长文档场景的应用需求。

2026-02-14 15:52:01 589

原创 小白程序员必看:用收藏级TRPO大模型提升技能,附代码实战

本文介绍了TRUST-REGION ADAPTIVE POLICY OPTIMIZATION(TRPO)大模型训练方法,创新性地在实例级别交错执行监督学习(SFT)和强化学习(RL),通过动态调整专家指导长度实现"脚手架"式学习。TRPO采用信任区域监督微调避免分布混合问题,结合自适应专家前缀选择,显著提升数学推理基准表现。文章附有代码实现和详细实验对比,适合程序员学习和收藏。

2026-02-14 15:51:06 510

原创 小白程序员轻松入门大模型,快速掌握高薪技能!程序员转行大模型开发避坑指南

本文为普通程序员提供了大模型应用开发的知识大纲,旨在帮助读者快速上手并实战应用。内容涵盖大模型基础认知、核心技能、进阶应用、实战落地及持续进化等方面,旨在避开底层算法深坑,直达高薪岗位需求。通过学习,程序员可以掌握大模型技术,实现升职加薪、就业或副业发展。

2026-02-11 20:00:15 882

原创 小白程序员必看!收藏这份OpenClaw大模型学习指南,开启你的AI数字管家之旅!

OpenClaw是一个开源的本地部署AI助手,能接管机器权限完成复杂任务。文章详细拆解了其五层技术架构:通道适配器、网关服务器、智能体运行器、智能体处理循环和响应路径,展示了如何将大模型推理与系统操作结合。OpenClaw通过Telegram等聊天工具作为指挥部,系统终端为执行层,实现全天候自动化服务。尽管安全性和稳定性有待提升,但已成为智能体方向的标杆,值得研究和借鉴。

2026-02-11 19:59:10 931

原创 小白程序员轻松入门:Qwen3-VL-Embedding模型实现文搜图案例

本文介绍了通义千问家族的多模态嵌入模型Qwen3-VL-Embedding-8B,该模型支持文本、图像等多种输入形式。文章详细展示了模型本地化部署过程,包括通过ModelScope下载模型、启动API服务等步骤,并提供了特征提取和API调用的代码示例。最后实现了一个文搜图案例,将图像特征存储到Milvus向量库中,为开发者提供了多模态检索的实践参考。整个部署过程约占用31.4GB显存,生成的向量维度为4096维。

2026-02-11 19:58:03 231

原创 ai大模型应用开发学习路线,AI大模型学习路线,非常详细只看这一篇就够了!行动转变命运!

大模型学习路线摘要: 学习大模型开发需打好数学与编程基础。数学方面需掌握线性代数(矩阵、特征值等)、微积分(导数、积分)和概率统计(贝叶斯定理等),推荐Khan Academy和MIT公开课。编程需精通Python语言和数据结构算法(数组、排序等),可通过Codecademy和Coursera课程学习。核心是建立扎实的理论基础,再结合实践逐步深入大模型开发领域。

2026-02-10 15:57:11 1029

原创 小白程序员快速掌握大模型核心技术:检索增强生成(RAG)入门到实战

摘要:检索增强生成(RAG)技术通过连接大语言模型与外部知识库,有效解决了知识时效性、准确性和长尾知识等关键问题。2025年RAG在多模态融合、动态知识管理和语义增强检索等方面取得突破性进展,支持文本、图像、音频等跨模态检索,实现分钟级知识更新。新一代RAG框架如RAGFlow通过混合检索策略和生成优化技术,显著提升检索准确率和生成质量,已在医疗、金融等领域广泛应用,为企业级AI应用提供核心支撑。

2026-02-10 15:54:04 268

原创 2025 AI元年已过,2025大模型爆发,小白也能玩转AI的收藏秘籍!

摘要: 2025-2026年,AI技术爆发式进化,从基建工具蜕变为具备多模态能力的“思考者”。作者亲历Claude Code在本地环境运行时的震撼——它能自主拆解任务、调试代码、协同多个Agent工作,甚至生成完整视频内容。经历初期狂热(工具焦虑、架构幻想)后,作者回归本质思考:如何让AI解决真实需求?最终聚焦亲子英语场景,30分钟内用AI落地“妈妈剧本”应用,整合对话、儿歌、互动指令,验证了AI对需求实现的颠覆性助力。技术爆发重塑了想象力边界,而核心仍在于解决实际问题。(149字) 关键词: AI爆发、多

2026-02-10 15:52:22 530

原创 小白程序员必看:收藏这份从零构建大模型的分词秘籍(Docker环境快速上手)

本文系统解析大模型训练中的文本分词技术,涵盖词元概念、三种分词策略(基于词/字符/子词)及主流子词分词法(BPE/WordPiece/SentencePiece)。通过Docker容器化技术搭建Jupyter实验环境,并实战演示BPE分词实现。文章深入探讨分词的核心价值(解决OOV、压缩词汇表等)、常见陷阱及优化方向(领域自适应、动态词汇表等),为NLP从业者提供从理论到实践的完整指导。采用容器化开发环境确保实验可复现性,为构建大模型奠定坚实基础。

2026-02-10 15:24:02 400

原创 什么是智能涌现:深入浅出解析AI大模型背后的智能“涌现”

AI大模型快速进化的两大核心规律是缩放定律(Scaling Law)和涌现(Emergence)。缩放定律表明,扩大模型规模(算力、数据、参数量)能稳定提升AI性能,就像炼丹时"大力出奇迹"。而涌现则指当模型达到临界规模时,能力突然跃升的现象,如水沸腾般出现逻辑推理、代码生成等新能力。这种"量变到质变"的突破源于大模型能在海量知识间建立联系,如同拼图最终呈现完整画面。当前AI已从简单应答发展到理解复杂指令,未来可能涌现更高级的智能。

2026-02-10 15:22:23 555

原创 【程序员必看】大模型行业发展与学习指南:高薪岗位+应用场景+全套学习资源

本文全面分析大模型行业前景,涵盖高薪岗位需求、多领域应用及挑战机遇。详细介绍算法工程师、数据科学家等职业薪资与发展空间,并分享大模型学习资源,包括成长路线图、专业书籍、视频教程、行业报告、项目实战及面试题。为有志于进入大模型领域的从业者提供系统化学习指南,助力抓住AI风口,实现职业突破。

2026-02-06 17:05:33 773

原创 大模型RAG实战:手把手教你用ThinkDoc搭建智能知识库(含API调用代码)

ThinkDoc智能知识库平台上线,支持个人与开发者使用。平台提供文档上传、解析和检索功能,个人用户可通过智能对话提升效率,开发者可集成API构建企业级RAG应用。文章详解了创建知识库、四种资料上传方式(文件、文件夹、笔记、网址),对比了深度解析(保留完整结构)与快速解析(侧重核心文本)两种模式,并介绍了向量、混合和全文三种检索策略。最后提供了Python代码示例,展示如何调用API实现文件上传与解析,助力开发者快速集成企业级应用。(149字)

2026-02-06 17:03:45 311

原创 构建10万+文档规模的企业级RAG系统,从入门到实战指南

本文针对企业级RAG系统构建中的三大痛点(检索慢、召回率低、部署复杂),提出了一套完整的解决方案。从文档预处理、Embedding模型选型、向量库优化、Rerank技术到生成阶段约束,详细介绍了10万+文档规模下的RAG系统构建方法。文章强调了检索系统而非模型参数量对RAG性能的决定性影响,并提供了量化评估指标与未来趋势展望,为RAG工程落地提供了实践指导。

2026-02-06 17:02:45 267

原创 从零到精通:GraphRAG技术详解与实战,彻底解决大模型“一本正经地胡说八道“问题

GraphRAG技术通过构建知识图谱解决传统RAG在多跳推理中的局限性。其流程包括文本切分、实体关系提取、知识图谱构建和社区检测,采用局部和全局检索策略。相比传统RAG,GraphRAG能有效关联分散信息,支持复杂推理。微软的实现方案具备精细实体抽取、图推理增强和可视化等优势,适用于企业知识管理和复杂问答场景。该技术通过结构化表示和社区聚类,显著提升了信息检索的完整性和推理能力。

2026-02-06 17:01:45 278

原创 构建生产级智能体AI系统:从架构到运维的完整指南

构建生产级智能体AI系统的四大支柱:编排工程、RAG架构、基础设施实践和可观测性。编排工程强调框架选择应基于实际需求,推荐LangGraph的高性能、CrewAI的角色设计或微软的企业整合方案;RAG架构需关注嵌入模型选择、向量数据库决策和分块策略;基础设施实践包括GPU资源管理、服务架构优化和渐进式部署;可观测性需实现端到端追踪,从监控升级为AI系统的控制平面。核心在于平衡性能与可靠性,通过严谨工程实践逐步构建复杂系统。

2026-02-06 17:00:30 960

原创 程序员如何抓住AI大模型红利?9大新兴岗位+学习路线全攻略(建议收藏)_AI大模型时代高薪岗位全攻略

AI大模型时代催生九大高薪岗位,包括首席AI官、AI基础设施工程师等,这些岗位因人才缺口大而薪资竞争力强。传统IT人才可通过夯实基础、定位方向、实战积累和持续学习实现转型。文章详细介绍了各岗位职责、核心技能及薪资前景,并提供了系统学习方法和资源,帮助职场人抓住AI红利。领导层和技术专家岗位薪资尤为突出,复合型人才需求旺盛,强调技术深度与业务洞察的结合。

2026-02-05 13:43:01 1133

原创 大模型智能体推理完整指南:从被动文本生成到自主决策智能体的范式转变

本文系统构建了大语言模型智能体推理的理论体系与技术框架,将LLMs从"被动文本生成器"重构为"自主决策智能体"。研究提出三层架构(基础层、自我演化层、集体协作层)与双优化模式(上下文内推理、训练后推理),通过"思考-行动-反馈"闭环实现动态环境中的自适应推理。论文形式化建模了智能体推理过程,区分内部推理与外部行动,并定义长期回报优化目标。技术框架涵盖规划推理、工具使用优化、智能体搜索等核心能力,以及反馈机制、记忆驱动等自我演化方法。研究还探讨了多智

2026-02-05 13:42:00 654

原创 从零构建安全AI智能体:文件操作的五重防护架构

本文提出AI智能体安全操作的"五重沙盒架构"(用户界面层、虚拟化层、容器化层、服务层、数据层),通过层层隔离确保智能体既能执行文件操作又不会危害系统安全。文章详细解析了八大核心操作接口的设计原则与使用场景,包括侦查类、执行类、文件操作类等,并演示了智能体创建企业官网的完整安全流程。该架构融合虚拟机与容器技术,在确保操作可观测、可复现的同时,为智能体提供安全可控的执行环境,为开发者构建高效可靠的AI智能体系统提供了实践指南。

2026-02-05 13:41:00 719

原创 2025全球大模型市场全景解析:从小白到程序员的必读指南

全球大模型市场正经历快速增长,预计市场规模将从2024年的107亿美元增至2029年的2065亿美元,年复合增长率达80.7%。技术突破、Scaling Law和成本下降是主要驱动力。大模型已从单模态扩展到多模态,融合文本、图像、音频和视频,推动生产力、娱乐、视觉生成等应用场景的创新。未来将向Agent演进,多模态融合释放更大潜力。竞争壁垒在于底层模型研发能力、商业化能力和组织能力。AI应用增速远超互联网和工业革命,ChatGPT仅用17个月就达到8亿用户。随着技术成熟,大模型将成为生产力新常态,持续释放产

2026-02-05 13:39:46 603

原创 大模型RAG技术实战:七大企业场景全覆盖(附源码)

本文系统介绍了企业级RAG检索增强生成技术的七大实战场景,包括基础RAG搭建、Small-to-Big上下文优化、混合检索等核心方法。针对检索准确性和多模态处理两大难题,通过代码实战演示了如何处理文本、Excel表格、PDF图表、图片和视频等多样化数据。文章提供完整源码,详细讲解了从环境准备到系统构建的全流程,并对比了普通RAG与进阶RAG的效果差异,为企业AI应用开发提供了实用解决方案。

2026-02-05 13:38:50 642

原创 2026年AI大模型应用开发保姆级教程:从入门到精通,这一篇就够了!AI大模型应用开发学习路线

摘要: 本文系统梳理AI大模型应用开发学习路径,分为筑基、进阶、实战、精进四个阶段。筑基阶段需掌握Python编程、数学基础和深度学习框架(推荐PyTorch);进阶阶段重点学习Transformer架构及GPT、BERT等主流模型原理;实战阶段侧重微调技术(如LoRA)和工具链应用;精进阶段关注模型部署与优化。学习大模型开发可把握时代风口,获得高薪机会,并赋能各行业智能化升级。文末提供精选学习资源清单,助力开发者快速成长。(149字)

2026-02-04 20:18:37 811

原创 大模型学习路线图:从入门到实战的完整指南_大模型开发入门到进阶,学习路线图分享

文章提供了一个从入门到实战的大模型(LLM)完整学习路径,分为4个阶段:基础打牢(0-2个月)、掌握主流框架(3-5个月)、模型微调与工程化(6-9个月)、多模态与算法进阶(9-12个月)。每个阶段明确了学习重点、实践任务和推荐资源,强调以输出为导向,通过项目实践掌握大模型开发技能,最终实现从理论学习到工程应用的转变。

2026-02-04 20:16:55 802

原创 零基础转行AI产品经理全攻略:双非/大龄/工作党逆袭案例,30w年薪不是梦!

本文介绍面向零基础人士的AI产品经理培训课程,特别针对建筑行业转行人群。课程涵盖人工智能基础、大模型技术、产品工作流程等内容,通过3个实战项目帮助学员掌握AI产品开发全流程。课程提供简历指导和面试辅导,已有学员成功获得30万年薪的AI产品岗位offer,适合零基础在校生、传统产品经理及想入AI领域的职场人士。

2026-02-04 20:15:50 589

原创 AI Agent实战:从金鱼记忆到持久化大脑,解决检索与感知难题全攻略

本文基于Qwen-Agent框架,系统解析企业级AI Agent的三大核心技术:通过Elasticsearch实现记忆持久化,解决传统内存检索的扩容瓶颈;采用三级RAG架构(关键词检索-相关性校验-多跳推理)提升检索精准度;利用Qwen3-Embedding模型实现语义感知。文章提供完整的技术改造方案与代码示例,包括ES索引构建、向量检索实现及Gradio界面优化,帮助开发者突破"单次交互尚可,多轮复用不足"的困境,构建支持海量数据的企业级智能体应用。

2026-02-04 20:14:21 825

原创 智能文档处理全栈指南:从OCR到VLM智能体的技术演进与AWS Serverless实践

本文系统梳理了智能文档处理技术的演进历程:从早期Tesseract的规则匹配,到PaddleOCR的深度学习识别,再到基于VLM智能体的端到端解析。重点分析了布局检测、阅读逻辑排序和视觉工具链三大关键技术突破,并提供了基于AWS Serverless和LandingAI ADE API的实践方案。该技术演进使系统能够准确理解文档结构、阅读顺序和复杂图表,实现了从简单"数据数字化"到真正"数据智能化"的质变,为文档自动化处理提供了全新范式。

2026-02-04 20:13:29 859

原创 金融毕业生转行AI开发,从零开始学习AI应用开发:人人都能成为智能体开发者

本文介绍了基于大模型的AI应用开发,重点讲解了智能体(Agent)的概念与应用。智能体通过组合多个AI模型,实现任务分解与协同工作,能处理复杂需求。与传统编程不同,AI开发将规则交由大模型处理,降低了技术门槛。文章指出,掌握大模型原理、API调用和Python等基础技能即可入门。随着自然语言编程的发展,未来人人都可能成为AI开发者。作者作为金融从业者转型AI开发的案例,展示了非技术背景人员也能通过自学掌握智能体开发技能。文章还提供了大模型学习资源和完整的学习路径建议。

2026-02-03 21:41:16 1547

原创 DeepSeek-OCR 2全量开源:像人一样读文档的新一代OCR模型与百度PaddleOCR实战对比

DeepSeek-OCR 2全新发布,采用"DeepEncoder V2"核心组件,实现了"像人一样读文档"的智能识别能力。相比传统OCR,它在复杂排版处理和PDF转Markdown方面表现突出,支持动态分辨率处理,单页成本低至0.0008元。与百度PaddleOCR相比,DeepSeek在语义理解和阅读顺序优化上更优,但部署门槛较高;而PaddleOCR在通用场景和易用性方面更具优势。两者各有所长,开发者可根据需求选择:学术文档处理推荐DeepSeek,日常OCR任

2026-02-03 21:40:03 865

原创 转行AI产品经理:零基础入门到求职实战 | 建议收藏学习

建弦AI产品营9.0助力转型AI产品经理,为零基础在校生、传统从业者提供从基础知识到项目实战的完整培训体系。课程帮助学员构建大模型知识框架,完成可展示的AI项目,并提供就业指导。调研显示,学员最关注AI行业真实需求、转型路径及就业前景。课程通过系统学习打破信息差,培养综合能力,为不同背景学员提供清晰的AI职业发展通道。

2026-02-03 21:39:09 795

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除