文主要介绍 Anthropic 推出的开源协议MCP(Model Context Protocol,模型上下文协议),旨在让读者快速了解该协议,实现大语言模型与外部数据源和工具的无缝集成。将从以下方面进行介绍:
1. MCP基本概念
2. 为什么使用MCP
3. MCP核心架构与流程
一、MCP基本概念
MCP(Model Context Protocol,模型上下文协议)是由Anthropic公司提出的开放标准协议,旨在为大型语言模型(LLM)与外部数据源、工具及服务提供统一的通信框架。它通过标准化的接口设计,使AI能够安全、高效地访问本地文件、数据库、API等资源,打破数据孤岛限制,赋予AI“连接万物”的能力。可以将 MCP 想象成 AI 应用程序的 USB-C 接口。就像 USB-C 为设备连接各种外设和配件提供了标准化的方式一样,MCP 为 AI 模型连接各种数据源和工具提供了标准化的接口。
二、为什么使用MCP
1. 产生背景
(1)传统AI的局限性:传统API集成成本高,不同系统间需定制化接口,开发效率低下(企业需投入30%资源用于接口适配)。
(2)AI应用的扩展需求:随着AI向物理世界渗透(如物联网、工业自动化),亟需支持动态扩展、跨平台协作的协议。
(3)封闭生态的突破:OpenAI的Function Call功能复杂且依赖特定平台,而MCP作为中间层协议,兼顾开放性与灵活性。
2. 创新优势
(1)标准化接口:统一JSON-RPC协议,支持跨语言(Python、TypeScript)和跨平台(本地/云端)集成,降低开发成本。
(2)模块化架构:将AI系统拆分为独立模块(数据处理、推理服务等),实现“即插即用”,动态扩展效率提升60%。
(3)安全与弹性:通过加密会话ID(Mcp-Session-Id)、细粒度权限控制,保障数据安全;支持断线重连(Last-Event-ID)和消息重传,提升稳定性。
(4)高效通信:新增Streamable HTTP传输机制,结合HTTP POST与SSE流,延迟降低40%,带宽利用率提升35%。
三、MCP核心架构与流程
1. 核心架构
MCP基于客户端-服务器架构,核心流程如下:
(1)请求阶段:客户端(如Claude Desktop)通过JSON-RPC发送请求(如“查询数据库”)。
(2)处理阶段:MCP服务器解析请求,调用资源(如执行SQL查询)或工具(如发送邮件),返回结构化数据。
(3)响应阶段:大模型整合结果生成响应,并维持上下文连贯性以支持多轮交互。
示例:用户要求AI订机票时,MCP自动联动日历(资源)、支付接口(工具)和邮件系统,无需人工干预。
2. 核心组件
(1)MCP主机(Host):发起请求的应用程序主机(应用如 Cursor、Claude Desktop)。
(2)MCP客户端(Client):负责与服务器通信,转发请求并返回结果。
(3)MCP服务器(Server):轻量级服务节点,提供三类功能:
a. 资源(Resources):静态数据(如文件、数据库记录)。
b. 工具(Tools):可执行函数(如发送邮件、调用API)。
c. 提示(Prompts):预定义模板,标准化LLM交互流程。
3. 核心流程
当用户提交一个问题时,核心执行流程如下:
(1)客户端(如Claude Desktop / Cursor)从服务器获取可用的工具列表;
(2)用户的查询连同工具描述一起发送给LLM(如Claude);
(3)LLM(如Claude)决定使用哪些工具(如果有的话);
(4)客户端通过服务器执行任何请求的工具调用;
(5)结果被发送回LLM(如Claude);
(6)LLM(如Claude)提供自然语言响应;
(7)响应显示给用户。
LLM如何能够选择恰当的工具呢?客户端通过将工具的具体使用描述以文本的形式传递给大模型,供大模型了解有哪些工具可以进行选择。LLM是通过Prompt来确定执行工具,核心Prompt代码如下:
四、结语
MCP协议通过标准化、模块化与安全设计,为AI应用提供了“万能插头”式的基础设施。无论是开发者构建复杂工作流,还是企业实现跨系统自动化,MCP均展现出强大的潜力。随着开源社区的壮大(GitHub已有超1100个项目),MCP或将成为AI时代不可或缺的数字总线。MCP开发案例及场景实践将在后续文章中进一步完善。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】