AI大模型崛起,在全球掀起一场AI的集体狂欢。
然而,喧嚣的背后,另一场深刻的数字变革正悄然展开:数字孪生与AI大模型全面走向融合。数字孪生与AI大模型的相遇,看似偶然,其实必然。从实验室概念走向智慧城市、工业制造等多个行业,数字孪生花费二十余载,但离全面释放价值似乎总是缺少关键一步。
而AI大模型所具备的强大理解能力、推理能力和生成能力,恰似为数字孪生未来突破送上的关键助攻,二者的融合带来不仅仅是物理世界与数字世界交互方式的变革,更有望将智慧城市、智能制造等行业的数字变革推向全新维度。
可以说,数字孪生与AI大模型的融合,本质上是一场“双螺旋创新”:技术驱动场景,场景反哺技术。在这场探索与创新中,中国已不再缺位,甚至开始引领。以飞渡科技为代表的中国数字孪生公司,探索数字孪生平台与AI大模型的深度融合,突破多个技术瓶颈,为中国各个行业构建起高效、精准、智能化的数字孪生底座,赋能数字中国建设。
谁是数字孪生的关键助攻
作为一种把技术和业务做到有序融合的理念和方法,数字孪生无可非议地成为各行各业数字化转型的核心抓手,从智慧城市、智慧园区、智能制造到、交通物联、自然资源、水利工程、能源管理等,数字孪生已在多个行业的多个场景带来重要价值。
然而,数字孪生距离全面的价值释放似乎还缺少什么。尤其是随着行业数字化转型的深入,智慧城市、智能制造等行业在需求侧的深刻变革,对于数字孪生带来一系列全新挑战。
以智慧城市为例,我国超过半数的地级行政区已开展数字孪生城市的建设,但多数城市的建设效果却乏善可陈,尤其是随着城市数字化程度增高,城市作为一个巨大系统的复杂性还在不断提升,人、事、物等变化速度超乎想象,要想在数字孪生层面实现一个全要素、全天候、全生命周期、实时感知监测的城市绝非易事。
信通院《数字孪生发展研究报告》就指出,我国数字孪生技术应用整体正处于第三阶段,即感知闭环驱动阶段,并逐步迈向第四阶段,核心需要基于“四层一域一体系”(设施层、数据层、能力层、服务层、生态域和应用体系)要素,打造能力聚合、开放扩展、虚实共生、迭代优化的数字孪生框架。
事实的确如此。数字孪生在传统技术路径下,数据更新滞后、建模成本高昂、语义信息缺失,使得数据“沉默化”、模型“静态化”、决策“滞后化”等瓶颈全面凸显。
例如,建模方法效率低效,一座中等城市的全要素建模往往需要数月时间,且模型质量参差不齐、细节表现能力不足、覆盖范围有限,面对城市每天的快速变化,无法实现动态、局部、可控的更新,导致数字孪生应用沦为"展示橱窗",中看不中用,无法真正赋能城市治理和产业升级。
如何改变这种现状?AI大模型的崛起,犹如为数字孪生送上关键助攻。归根结底,AI大模型实现了数字孪生技术范式的突破,利用AI技术全面重构数字孪生场景的标准与流程,有效推动数字孪生全面向先知、先觉、共智的阶段进化。
数字孪生平台+AI大模型:产业变革的奇点
时至今日,面对需求的快速变化,只有仿真不能称之为孪生,数字孪生必须具备更深层次的洞察能力和更高的交互和体验,既需要对物理世界的快速变化看得见、看得懂,又能将物理世界模型化和参数化,以达到实时数据驱动和推演;更需要在大规模复杂应用中提供更加完善的交互体验。
毫无疑问,AI大模型的出现对于提升数字孪生有着关键作用。业界普遍认为,数字孪生与AI大模型技术相辅相成,二者的融合犹如双螺旋创新,实现互补之余,还能大幅推动彼此的创新。
数字孪生既能带来大量高质量、结构化的数据,又能提供无风险、高逼真的验证环境,还能带来实时反馈和大模型输出的透明度,这些均是AI大模型在场景中所亟需的;另一方面,AI大模型的生成式AI、推理能力等,又对于数字孪生的工作机理模型和三维模型构建、实时数据驱动的模型更新、生成式模型增强、数据分析、仿真预测以及智能决策等带来巨大帮助。
因此,数字孪生与AI大模型的融合就成为当下最重要的技术趋势。这其中,中国的数字孪生公司则走在探索的最前沿。以飞渡科技为例,其基于数字孪生平台+峥嵘大模型构建出一套完整的技术方案,通过深度学习计算机视觉和生成式AI等前沿技术,重新定义数字孪生场景重建的标准和流程。
例如,峥嵘大模型采用AI倾斜摄影处理技术,实现贴图自动美化、光影智能处理等,整体视觉效果达到影视级渲染水准;另外,基于AI神经网络分割,自动完成场景单体化与语义化处理,场景构建效率提升达60%;而且,基于AI几何重建,峥嵘大模型对场景要素特征进行深度优化,在智慧城市复杂场景中,可将建筑边缘精度提升至厘米级,曲面拟合误差降低80%。
据悉,飞渡科技的峥嵘大模型在技术路线上聚焦AI轻量化、AI单体化、AI语义化和AI精细化,在数据要素、视觉保真度、城市要素识别与分类、细节还原等方面均有着显著提升;另一方面,得益于飞渡科技的千万级参数化基元库和亿级多源数据集的持续沉淀,峥嵘大模型所采用的"生成+积累"的双轮驱动模式,重新定义了数字孪生构建标准,在静态内容仿真、动态内容仿真等方面均实现精度的大幅提升;更加关键的是,峥嵘大模型在重建效率、建模维度等方面实现数字孪生技术范式的突破,其"语义-几何-物理"三位一体建模框架,实现城市要素的自动语义标注,使数字孪生体具备真实的物理仿真能力,支持实景三维底座按照“动态、局部、可控”按需更新,实时监测环境变化,使数字孪生体真正成为与现实世界同步进化的"活体"系统。
众所周知,数字孪生属于典型巨技术的复杂应用,涉及到众多技术的集成与应用,而数字孪生平台就像一个六边形战士,对于牵引顶层设计、融合新技术、融合海量空间数据和降低数字孪生门槛有着重要作用。如今,随着AI大模型的融入,数字孪生平台不仅在能力层面有望再上一个台阶,更有望让数字孪生在产业数字变革中全面释放出价值。
市场数据不会说谎。IDC《中国数字孪生解决方案市场份额》报告显示,数字孪生平台市场近年来增长显著;其中,飞渡科技为例数字孪生平台市场第一,其多年对于数字孪生平台底层核心技术研发和产品的持续打磨,引领着数字孪生平台的发展趋势。
重塑产业未来
IDC认为AI与数字孪生的结合,将提供更加精准的数据分析和模拟,为决策者提供更为科学的依据,不仅推动智能制造、智慧城市、智能物流等领域的创新发展,还将带来更高效、更智能的解决方案。
如今,数字孪生已成为智慧城市、工业制造、航空航天、交通、能源等行业数字化转型的核心支撑技术,赋能着千行百业;另一方面,国家也通过一系列政策来推动数字孪生的普及与应用。
显然,像飞渡科技探索出的数字孪生平台+峥嵘大模型的技术解决方案极具价值,对于降低数字孪生门槛和普及数字孪生应用有着重要的推动作用。
例如,在智慧城市领域,飞渡科技通过数字孪生平台+峥嵘大模型已经在城市场景更新、城市治理方面展示出效率革命,并实现城市智能空间交互系统,形成"提问-分析-展示"的智能闭环,让城市管理者直观获取时空维度的深度洞察。
又如,在智慧应急领域,飞渡科技通过数字孪生平台+峥嵘大模型构建"感知-推演-决策"的全链路解决方案,通过"数字孪生+灾害推演"模式,实时掌控现场态势、预判灾情发展,大幅提高应急响应效率,实现多部门协同的一键式智能指挥。
再如,在智慧水利领域,飞渡科技通过数字孪生平台+峥嵘大模型进行亚米级地形建模,构建暴雨洪涝仿真系统,可准确预测不同降雨情景下的洪水演进过程,将灾害模拟分析的准备周期从传统的数月量级大幅缩短至数日级别,实现灾害应急响应效率的数量级提升。
林林总总,数字孪生平台+AI大模型正在迅速重塑数字孪生,推动着数字孪生从“可视化工具”升级为“认知型决策中枢”,并且深刻影响着智慧城市、工业制造、应急、交通、能源等行业的未来,驱动着这些行业从“经验驱动”逻辑全面转向为“数据驱动”的决策法则。
综合观察,正如凯文·凯利所言:“未来已来,只是分布不均”。数字孪生与AI大模型的融合,已经在局部场景中小试牛刀,并吹响了产业变革的号角,这不仅是一次技术融合的序幕,更像是一场认知革命的开启。随着数字孪生与AI大模型融入到千行百业之中,未来的世界既是物理的,也是虚拟的,更是想象的。唯一可以确定的是,一场伟大的产业变革才刚刚开始。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】