就在三天前,谷歌官宣推出全新的A2A(Agent-to-Agent)开放协议,旨在规范多智能体系统(Multi-Agent Systems)之间的通信方式。
一石激起千层浪,社交媒体瞬间沸腾——
💬 这背后到底藏着什么玄机?
我们不妨回顾一下目前主流的两大协议:MCP 与 A2A,看看它们如何区别、如何协同,又可能在未来掀起怎样的竞争。借用 Aurimas 大神的一张图,更直观的进行对比。
🧩 协议梳理:MCP vs A2A
🔹 MCP(Model Context Protocol) 是什么?
MCP 是围绕 LLM(大语言模型)构建的通信框架,它将外部工具、数据源和智能体以结构化方式接入模型的上下文中。主要角色如下:
1️⃣ MCP 主机:以 LLM 为核心的应用程序,想通过 MCP 访问数据。
❗️若与 A2A 联用,Agent 本身就可作为 MCP 主机。
2️⃣ MCP 客户端:与服务器建立一对一连接的客户端。
3️⃣ MCP 服务器:轻量级程序,通过 MCP 接口对外提供功能。
4️⃣ 本地数据源:服务器可安全访问的文件、数据库、服务等。
5️⃣ 远程数据源:服务器可通过 API 等方式接入的互联网服务。
🔹 那么,A2A 来干嘛的?
A2A 的出现,正是为了解决 MCP 在多智能体场景中的短板。
在多智能体协作中,状态不是共享的,这时候 MCP 显得有些力不从心。
A2A 的加入,提供了:
✅ 身份验证与安全通信(MCP 没有) ✅ 任务与状态同步管理 ✅ 用户体验协商机制 ✅ 功能发现机制(类似 MCP 工具注册)
换句话说,A2A 补齐了 MCP 的短板,为智能体之间的自由协作提供了标准化通道。
🤔 那 MCP 要被淘汰了吗?
未必。很可能,MCP 的开发者也有意向引入 A2A 类似的功能,并持续开放代理机制。
但可以预见的是,
⚔️ A2A 与 MCP 之间,未来很可能会上演一场“通信协议争霸战”。
谁能成为多智能体时代的“标准接口”?
让我们拭目以待。
📌 小结一下:
-
MCP 更偏向于 LLM + 工具生态;
-
A2A 强调的是 Agent 之间的自主协作和通信;
-
两者并不冲突,而是互补。
多智能体的世界正在快速进化,而通信协议的演进,将成为决定未来生态形态的关键变量。
💬 你觉得谁会笑到最后?或者有其他观点?欢迎留言讨论!
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】