随着人工智能技术的发展,尤其是大模型(Large Model)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。
一、基础知识阶段
1. 计算机科学基础
- 数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序、查找、递归等)。
- 编程语言:掌握至少一种编程语言,如Python,因为它是目前数据科学中最常用的编程语言之一。
- 数据库:了解关系型数据库(如MySQL)和非关系型数据库(如MongoDB)的基本操作。
2. 人工智能与机器学习基础
- 机器学习原理:了解监督学习、无监督学习、强化学习等基本概念。
- 深度学习基础:熟悉神经网络的基本组件(如卷积层、池化层、激活函数等)及其工作原理。
- 模型训练与评估:学习如何使用深度学习框架(如TensorFlow或PyTorch)训练模型,并对其进行评估。
二、大模型技术阶段
1. 大模型技术概览
- 大模型的定义与发展:理解什么是大模型,它们是如何从传统的机器学习模型演变来的。
- 大模型应用场景:了解大模型在自然语言处理、计算机视觉、语音识别等领域中的应用实例。
2. 大模型训练与优化
- 分布式训练:学习如何利用多GPU/CPU进行分布式训练。
- 模型压缩与加速:掌握模型剪枝、量化等技术来降低计算成本。
- AutoML与超参数优化:了解自动化机器学习工具和方法,如网格搜索、贝叶斯优化等。
三、产品管理与商业分析
1. 产品思维
- 用户研究:学习如何进行用户调研,收集需求,并将其转化为产品功能。
- 产品设计:理解用户体验设计原则,以及如何设计出既美观又实用的产品界面。
2. 商业模式与市场分析
- 商业计划书撰写:学会如何撰写一份吸引投资人的商业计划书。
- 市场定位与竞争分析:研究目标市场,分析竞争对手,确定自身产品的独特卖点。
四、实战经验积累
1. 项目实践
- 参与实际项目:加入一个正在进行的大模型项目,亲身经历从需求分析到产品发布的整个流程。
- 数据集准备与管理:负责数据的收集、清洗、标注等工作。
- 模型部署与维护:学习如何将训练好的模型部署到生产环境中,并对其进行持续监控与迭代。
2. 社区与网络建设
- 技术交流:参加相关的技术会议、研讨会或在线论坛,与其他专业人士交流心得。
- 个人品牌建立:通过撰写博客、发表论文等方式分享自己的经验和研究成果,建立个人影响力。
五、持续学习与自我提升
1. 行业趋势跟踪
- 关注AI领域的新进展:定期阅读专业期刊、参加行业会议,了解最新的研究发现和技术革新。
- 学习新工具与框架:随着技术的进步,不断学习新兴的技术工具和框架,保持自己的竞争力。
2. 软技能提升
- 领导力与团队协作:培养领导才能,学会如何带领团队达成目标。
- 沟通与演讲能力:提高自己的沟通表达技巧,在团队内外有效传达思想。
这条学习路线涵盖了从基础到高级的所有关键方面,旨在帮助你成长为一名优秀的大模型产品经理。记住,成为一名成功的产品经理并不是一蹴而就的事情,而是需要长时间的学习与实践积累。希望这份指南能为你的职业生涯增添一份助力。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。