推荐支持MCP的六大AI框架

01

引言

AI智能体工具包为开发者提供了多样化的API接口,旨在为AI解决方案配备执行任务所需的工具,并确保输出结果的准确性以满足用户需求。然而,将这些工具集成至AI应用程序并进行有效管理往往面临诸多混乱。本文将通过模型上下文协议(MCP),向大家介绍为大型语言模型和智能体提供上下文的行业标准实践。

闲话少说,我们直接开始吧!

02

LLM上下文规范

默认情况下,如果不为LLM(大语言模型)和AI聊天机器人提供适当的上下文,它们将无法获取实时信息、执行代码、调用外部工具和API,甚至无法代表用户使用浏览器。开发者可以采用以下方法来解决LLM和智能体的这一局限性。

  • Composio

Composio 提供了一套规范和工具库,用于集成AI智能体和LLM。除了现成的工具库外,Composio 近期还推出了 Composio MCP,使开发者能够连接100多个支持MCP的IDE服务器。通过下述链接,

链接:https://composio.dev/

大家可以查看 Composio MCP 工具分类,并在支持MCP的IDE(如Cursor、Claude和Windsurf)中将多个应用集成到您的项目中。

  •  Agents.json

Agents.json 是基于OpenAI标准构建的规范,旨在优化AI智能体与API及外部工具的交互体验。尽管Agents.json是一个优秀的规范,但它的普及度远不如MCP,目前尚未被广泛采用。

链接:https://github.com/wild-card-ai/agents-json

大家可以参考其GitHub仓库了解更多信息并开始使用。

3. MCP(模型上下文协议)

MCP 为开发者提供了最佳方式,能够向LLM和AI助手提供上下文数据以解决问题。例如,我们可以搭建一个 MCP文档服务器,让IDE和智能体框架(类似于llms.txt文件的方式)完整访问我们的文档。

03

什么是MCP?‍

可以将MCP视为大语言模型(LLM)的第三次演进。在第一次进化阶段,LLM仅能基于训练数据中的信息准确回答用户提问,若遇到训练数据之外的查询,它们便无法给出有效回应,因为此时LLM尚未具备调用外部工具的能力。到了第二次进化阶段,我们为LLM提供了额外的上下文(工具),虽然这些工具的交互方式并不直观,但已能帮助LLM更精准地预测和响应用户意图。而第三次进化依然由LLM和工具构成,但这次我们构建了完善的底层架构,使其不仅能接入外部应用程序,还能确保整个系统的可维护性。

在构建AI服务时,大家的企业数据可能存储在云端——比如用于处理客户支持工单的AI助手应用。MCP是Anthropic推出的开源协议,可帮助企业数据与AI系统建立连接。

该协议提供了一种标准化方式,能够将内容存储库(GitHub、Notion)、开发环境、网络资源及商业工具与辅助型AI技术进行对接。目前最受欢迎且持续增长的MCP应用场景当属AI辅助编程:通过与Cursor、Windsurf等数百个开发环境和工具的MCP集成,开发者可以实现与外部应用程序的交互式开发。

注:本文重点讲解如何为基于Python/TypeScript开发的AI助手和智能体系统实现MCP集成,而非IDE环境下的MCP对接方案。

04

MCP工作原理


在大语言模型(LLM)和智能体的应用场景中,MCP能够帮助它们对超出内置知识范围的用户查询作出有效响应。例如,当您要求ChatGPT向特定Slack频道发送消息、查看日历空闲时间并安排今日团队会议时,ChatGPT的回应往往会令人失望——因为它无法直接访问这些应用程序。而MCP的实施则能让这些智能助手输出真正可用的结果。

开发者最常提出的第一个问题是:MCP如何运作?

MCP的基本操作方式是:用户向智能体发送查询,智能体随后决定调用哪个MCP服务器和工具,以获取相关信息用于完成任务。智能体再利用来自特定工具的数据,向用户提供响应。

那么为什么需要将MCP用于AI Agent ?

MCP正逐渐成为开发者构建AI系统的行业标准,使这些系统能够高效对接各类外部应用程序。微软近期宣布在Copilot Studio中集成MCP协议,大幅简化了AI应用和智能体调用工具的过程。无独有偶,OpenAI也宣布在其全线产品(包括智能体开发套件和ChatGPT桌面应用)中支持MCP协议。

虽然直接为AI助手配备工具并无不妥,但对于包含多个子智能体、需并行处理邮件收发、网络爬取、财务分析、实时天气查询等复杂任务的AI系统而言,这种直接集成方式会显得异常笨拙。

05

具备工具集成的AI Agent

在上图中,有三个外部工具连接至大语言模型(LLM)。如果工具数量增加到100个以上,管理和保障其安全性将变得令人头疼。

改进方案是通过MCP注册中心统一访问这些工具(甚至超过100个),如下所示。

在这张图中,我们将智能体系统所需的工具整合起来,并通过MCP服务器统一访问,从而提供更连贯的用户体验。MCP方案通过集中化管理,使这些工具的安全维护和操作管理变得更加便捷。

06

使用MCP的优势

相较于传统将工具集成到AI智能体的方式,MCP具有多项关键优势。例如,没有MCP的工具集成可靠性值得怀疑,因为在对外部应用程序进行多次API调用时,可能会由于AI基础设施不兼容而导致多种错误。在引入MCP之前,每个希望添加到智能体的工具都必须使用自定义代码实现,通常需要数周时间。

  • 架构:与为AI智能体预构建的工具规范不同,MCP具有一种清晰且灵活的架构,便于与工具和API交互。

  • 改进的外部工具访问与管理:它通过标准化接口为AI模型提供工具访问,弥合了LLMs与第三方系统交互之间的通信差距。

  • 解决独立工具实现的限制:MCP工具适用于单用户场景和团队合作。

  • 社区驱动:MCP拥有许多开源服务器和开发者生态系统,在开发者社区中被广泛采用,适用于多种用例。

  • 身份验证:它具有强大的内置认证和权限系统,用于控制工具访问。例如,使用Composio提供的MCP工具时,可以通过Google Sheets或Gmail对用户进行身份验证。

  • 工具搜索:与传统的安装、配置和集成工具到AI聊天机器人方式不同,MCP使查找和寻找外部工具变得更加简单。

  • 可扩展性:MCP能轻松扩展到大量用户和应用场景。

  • 行业标准:虽然可以安装硬编码工具以为AI应用提供上下文,但MCP提供了行业标准,帮助智能体和LLMs获取所需的上下文信息。

07

不同的MCP服务类型

Anthropic 的 MCP 规范提供了两种服务器形式,用于向智能体和 AI 项目添加工具。这些 MCP 服务器连接类型包括以下两种:

  • 服务器推送事件 (SSE):通过 HTTP 连接到远程服务。

  • 标准输入输出 (STDIO):允许执行本地命令并通过标准输入/输出进行通信。

大家选择的 AI 应用开发框架会提供连接这些服务器所需的类。

08

不同的MCP工具库

一些开源的托管MCP工具库旨在增强大型语言模型(LLMs)和智能体的能力,确保它们生成的响应更可靠。这些托管的MCP工具库被称为注册中心(registries),提供经过策划的服务集合。大家可以使用它们的工具将紫霞的AI应用连接到以下注册中心。此外,还可以选择不同的服务器类型,例如uvx,它由基于Python的工具组成,无需安装。此外,还有用于运行MCP工具的Docker选项,以及需要安装Node.js的npx基础服务器。

  • GitHub上的MCP服务器:由社区构建的服务器集合,包含额外的MCP资源。

链接:https://github.com/modelcontextprotocol/servers

  • Glama Registry:面向开发者的生产就绪、开源的MCP服务器。

链接:https://glama.ai/mcp/servers

  • Smithery Registry:通过Smithery,开发者可以访问超过2000个MCP服务器,增强AI代理和LLMs的能力。

smithery链接: https://smithery.ai/

  • OpenTools:提供用于MCP工具的生成式API。你可以访问数百个现成的MCP工具,用于你的AI项目。通过OpenTools API,开发者可以扩展LLMs的网页搜索能力、实时获取位置信息和网页抓取功能。该API支持Curl、Python和TypeScript。请访问OpenTools快速指南以开始使用该API。

opentools官网:https://opentools.com/

示例如下:

  • PulseMCP Registry:使用PulseMCP,你可以浏览托管的MCP工具和应用案例,支持你的AI项目。还可以查看PulseMCP新闻,了解最新趋势的MCP服务器和应用。

官网链接:https://www.pulsemcp.com/

  • mcp.run:该注册中心为开发者提供数百个MCP应用,用于商业用途。

官网链接:https://www.mcp.run/

  • Composio Registry:Composio的基于SSE的MCP服务器,便于将工具与不同的AI框架集成,构建应用。

官网链接:https://mcp.composio.dev/

  • guMCP:Gumloop的guMCP提供免费、开源、全托管的MCP服务器,便于与任何AI应用无缝集成。

官网链接:https://www.gumloop.com/mcp

09

使用OpenAI Agents SDK构建MCP智能体

虽然MCP已经成为一个热词,且所有开发者社区近期都在讨论它,但要知道使用哪些MCP客户端框架以实现与AI应用和代理的集成并不容易。我们进行了调研,发现以下在Python和TypeScript基础上用于智能体工作流和AI助手的领先MCP客户端平台。

注意:以下内容展示了在构建AI解决方案的框架中实现MCP的方法。

  • 构建Git MCP智能体

使用OpenAI Agents SDK构建智能体时,大家可以通过SDK的MCPServerStdio和MCPServerSse类连接到这些由社区开发的MCP服务器。以下的MCP智能体示例实现会访问你本地Git仓库的根目录,并对用户关于该仓库的查询作出响应。

import asyncioimport shutilimport streamlit as stfrom agents import Agent, Runner, tracefrom agents.mcp import MCPServer, MCPServerStdioasync def query_git_repo(mcp_server: MCPServer, directory_path: str, query: str):    agent = Agent(        name="Assistant",        instructions=f"Answer questions about the localgit repository at {directory_path}, use that for repo_path",        mcp_servers=[mcp_server],    )    with st.spinner(f"Running query: {query}"):        result = await Runner.run(starting_agent=agent, input=query)        return result.final_outputasync def run_streamlit_app():    st.title("Local Git Repo Explorer")    st.write("This app allows you to query information about a local git repository.")    directory_path = st.text_input("Enter the path to the git repository:")    if directory_path:        # Common queries as buttons        col1, col2 = st.columns(2)        with col1:            if st.button("Most frequent contributor"):                query = "Who's the most frequent contributor?"                run_query(directory_path, query)        with col2:            if st.button("Last change summary"):                query = "Summarize the last change in the repository."                run_query(directory_path, query)        # Custom query        custom_query = st.text_input("Or enter your own query:")        if st.button("Run Custom Query") and custom_query:            run_query(directory_path, custom_query)def run_query(directory_path, query):    if not shutil.which("uvx"):        st.error("uvx is not installed. Please install it with `pip install uvx`.")        return    async def execute_query():        async with MCPServerStdio(            cache_tools_list=True,            params={                "command": "python",                 "args": [                    "-m",                     "mcp_server_git",                     "--repository",                     directory_path                ]            },        ) as server:            with trace(workflow_name="MCP Git Query"):                result = await query_git_repo(server, directory_path, query)                st.markdown("### Result")                st.write(result)    asyncio.run(execute_query())if __name__ == "__main__":    st.set_page_config(        page_title="Local Git Repo Explorer",        page_icon="📊",        layout="centered"    )    # Change from async to synchronous implementation    # Since Streamlit doesn't work well with asyncio in the main thread    # Define a synchronous version of our app    def main_streamlit_app():        st.title("Local Git Repo Explorer")        st.write("This app allows you to query information about a Git repository.")        directory_path = st.text_input("Enter the path to the git repository:")        if directory_path:            # Common queries as buttons            col1, col2 = st.columns(2)            with col1:                if st.button("Most frequent contributor"):                    query = "Who's the most frequent contributor?"                    run_query(directory_path, query)            with col2:                if st.button("Last change summary"):                    query = "Summarize the last change in the repository."                    run_query(directory_path, query)            # Custom query            custom_query = st.text_input("Or enter your own query:")            if st.button("Run Custom Query") and custom_query:                run_query(directory_path, custom_query)    # Run the synchronous app    main_streamlit_app()

上述代码将Streamlit与OpenAI MCP代理集成,允许你通过Git MCP服务器与本地Git仓库进行聊天。要运行此示例,你需要安装以下软件包:

pip install streamlit openai-agents mcp-server-git

然后,使用以下命令导出你的OpenAI API密钥:

exportOPENAI_API_KEY=sk-...

在你运行Python文件时,应该会看到类似如下的结果。

大家可以在GitHub上探索其他关于OpenAI MCP的示例。

链接:https://github.com/openai/openai-agents-python/tree/main/examples/mcp

使用Agents SDK的MCP集成的一个优点是它在OpenAI的控制面板中内置的MCP智能体监控系统。该功能会自动捕捉你的智能体的MCP操作,例如工具列表、POST响应以及获取有关函数调用的数据。下图展示了运行上述代码后,本节中Git MCP示例的追踪信息。你可以从OpenAI的控制面板中访问所有已记录的信息。

10

使用PraisonAI构建MCP智能体

Praison AI是一个基于Python的人工智能框架,用于构建智能体。它提供了最简单的方法,将MCP服务器工具加入智能体工作流,仅需一行代码,就像为智能体配备传统工具一样。

下面的示例将Airbnb的MCP服务器与Praison AI智能体集成,使用Streamlit界面帮助用户在指定地点寻找公寓。

要使用Praison AI创建你的第一个MCP代理,大家应当安装以下软件包:

pip install streamlit mcp praisonaiagents 

然后,使用以下命令导出你的OpenAI API密钥:

exportOPENAI_API_KEY=sk-...

样例代码如下:

import streamlit as stfrom praisonaiagents import Agent, MCP
st.title("🏠 Airbnb Booking Assistant")
# Create the agent@st.cache_resourcedef get_agent():    return Agent(        instructions="""You help book apartments on Airbnb.""",        llm="gpt-4o-mini",        tools=MCP("npx -y @openbnb/mcp-server-airbnb --ignore-robots-txt")    )
# Initialize chat historyif "messages" not in st.session_state:    st.session_state.messages = []
# Display chat historyfor message in st.session_state.messages:    with st.chat_message(message["role"]):        st.markdown(message["content"])
# User input formwith st.form("booking_form"):    st.subheader("Enter your booking details")
    destination = st.text_input("Destination:", "Paris")
    col1, col2 = st.columns(2)    with col1:        check_in = st.date_input("Check-in date")    with col2:        check_out = st.date_input("Check-out date")
    adults = st.number_input("Number of adults:", min_value=1, max_value=10, value=2)
    submitted = st.form_submit_button("Search for accommodations")
    if submitted:        search_agent = get_agent()
        # Format the query        query = f"I want to book an apartment in {destination} from {check_in.strftime('%m/%d/%Y')} to {check_out.strftime('%m/%d/%Y')} for {adults} adults"
        # Add user message to chat history        st.session_state.messages.append({"role": "user", "content": query})
        # Display user message        with st.chat_message("user"):            st.markdown(query)
        # Get response from the agent        with st.chat_message("assistant"):            with st.spinner("Searching for accommodations..."):                response = search_agent.start(query)                st.markdown(response)
        # Add assistant response to chat history        st.session_state.messages.append({"role": "assistant", "content": response})
# Allow for follow-up questionsif st.session_state.messages:    prompt = st.chat_input("Ask a follow-up question about the accommodations")    if prompt:        search_agent = get_agent()
        # Add user message to chat history        st.session_state.messages.append({"role": "user", "content": prompt})
        # Display user message        with st.chat_message("user"):            st.markdown(prompt)
        # Get response from the agent        with st.chat_message("assistant"):            with st.spinner("Thinking..."):                response = search_agent.start(prompt)                st.markdown(response)
        # Add assistant response to chat history        st.session_state.messages.append({"role": "assistant", "content": response}) 

运行示例代码将调用所需的 Airbnb MCP 工具,为大家查找特定位置的公寓,如下所示。

你已经注意到,只需一行代码​​​​​​​

 tools=MCP("npx -y @openbnb/mcp-server-airbnb --ignore-robots-txt") 

我们就可以为代理添加MCP支持,其中npx代表运行启动MCP服务器的命令,-y是传递给该命令的命令行参数。有关更多信息,请参考OpenAI Agents SDK文档。

11

使用LangChain AI构建MCP智能体

LangChain支持使用工具调用(tool-calling)与MCP集成。这种支持允许你设置Python函数,以访问不同的MCP服务器并获取工具,从而在AI项目中执行各种任务。以下示例代码连接到一个安全的MCP文件系统服务器,使大型语言模型(LLM)能够准确回答你提供的任何文件相关的问题。​​​​​​​

# Copyright (C) 2024 Andrew Wason# SPDX-License-Identifier: MIT
import asyncioimport pathlibimport sysimport typing as t
from langchain_core.messages import AIMessage, BaseMessage, HumanMessagefrom langchain_core.output_parsers import StrOutputParserfrom langchain_core.tools import BaseToolfrom langchain_groq import ChatGroqfrom mcp import ClientSession, StdioServerParametersfrom mcp.client.stdio import stdio_client
from langchain_mcp import MCPToolkit
asyncdefrun(tools: list[BaseTool], prompt: str) -> str:    model = ChatGroq(model_name="llama-3.1-8b-instant", stop_sequences=None)  # requires GROQ_API_KEY    tools_map = {tool.name: tool for tool in tools}    tools_model = model.bind_tools(tools)    messages: list[BaseMessage] = [HumanMessage(prompt)]    ai_message = t.cast(AIMessage, await tools_model.ainvoke(messages))    messages.append(ai_message)for tool_call in ai_message.tool_calls:        selected_tool = tools_map[tool_call["name"].lower()]        tool_msg = await selected_tool.ainvoke(tool_call)        messages.append(tool_msg)returnawait (tools_model | StrOutputParser()).ainvoke(messages)
asyncdefmain(prompt: str) -> None:    server_params = StdioServerParameters(        command="npx",        args=["-y", "@modelcontextprotocol/server-filesystem", str(pathlib.Path(__file__).parent.parent)],    )asyncwith stdio_client(server_params) as (read, write):asyncwith ClientSession(read, write) as session:            toolkit = MCPToolkit(session=session)await toolkit.initialize()            response = await run(toolkit.get_tools(), prompt)print(response)
if __name__ == "__main__":    prompt = sys.argv[1] iflen(sys.argv) > 1else"Read and summarize the file ./readme.md"    asyncio.run(main(prompt))

在运行上述代码前,我们需要安装依赖包:

pip install streamlit mcp praisonaiagents 
pm install -g @modelcontextprotocol/server-filesystem

所有必需的包安装完毕后,如果你向项目中添加了一个文件,并在 Python 脚本中按照示例代码(如上所示的 ./readme.md)引用它,你应该会看到类似如下的输出。

12

使用Chinlit AI构建MCP智能体

Chainlit 是一个用于用 Python 构建 AI 应用的平台。它内置支持 MCP 服务器,因此你可以配置你的应用程序以发现可用的 MCP 工具,并将工具调用集成到应用流程中,以实现更优的效果。你还可以将 Chainlit 应用与服务器推送事件(SSE)和命令行(stdio)等服务进行集成。在以下示例中,我们将把一个 Chainlit 应用连接到 Linear MCP 服务器,以便应用可以管理 Linear 的问题、项目和团队。你可以使用本示例中的 Linear 工具创建、更新、搜索或获取用户问题,或在问题中添加评论。

首先,我们需要注册 MCP 连接:在此步骤中,你应当实现 Chainlit异步函数on_mcp_connect,以建立成功的连接。你还可以实现函数on_mcp_disconnect来进行清理工作

​​​​​​​

# pip install chainlit
import chainlit as clfrom mcp import ClientSession
@cl.on_mcp_connectasyncdefon_mcp_connect(connection, session: ClientSession):"""Called when an MCP connection is established"""# Your connection initialization code here# This handler is required for MCP to work
@cl.on_mcp_disconnectasyncdefon_mcp_disconnect(name: str, session: ClientSession):"""Called when an MCP connection is terminated"""# Optional handler: Cleanup your code here

其次,需要配置 MCP 客户端(Chainlit、LangChain、Mastra):为了让 MCP 服务器与 Chainlit 应用正常工作,客户端应通过 Chainlit 的界面提供连接信息。

该配置包括以下内容:

  • 代表连接名称的唯一标识符。

  • 客户端类型:你应当指定是使用 SSE 还是 stdio。使用 SSE 时,需要添加 URL 端点;而使用 stdio 时,则需要一个完整的命令(例如:npx your-tool-package)。下面是完整命令的示例:

npx -y linear-mcp-server --tools=all --api-key=lin_api_your_linear_API_Key

建立 MCP 服务器连接后,大家可以在 MCP 会话中执行工具。最终,你可以通过工具调用,将 MCP 工具无缝集成到你的 Chainlit 应用的模型或代理(agents)中。你可以在 GitHub 上的 Chainlit 示例应用中找到此 Linear MCP 集成的完整源代码。

代码链接:https://github.com/Chainlit/cookbook/tree/main/mcp-linear

13

使用Agno AI构建MCP智能体

Agno 是一个用于构建复杂代理工作流的 Python 框架。它因其简洁、易用以及与 MCP 服务器的无缝集成而受到欢迎。本节的示例 MCP 实现与由四个不同的贡献代理组成的多智能体团队协作,包括 Airbnb、Google Maps、网络搜索和天气 MCP 代理。这些 Agno 多智能体协作,旨在提供关于特定地点旅行的信息。

相关的配置如下:​​​​​​​

# Define server parameters    airbnb_server_params = StdioServerParameters(        command="npx",        args=["-y", "@openbnb/mcp-server-airbnb", "--ignore-robots-txt"],        env=env,    )
    maps_server_params = StdioServerParameters(        command="npx", args=["-y", "@modelcontextprotocol/server-google-maps"], env=env    )
# Use contextlib.AsyncExitStack to manage multiple async context managersasyncwith contextlib.AsyncExitStack() as stack:# Create stdio clients for each server        airbnb_client, _ = await stack.enter_async_context(stdio_client(airbnb_server_params))        maps_client, _ = await stack.enter_async_context(stdio_client(maps_server_params))
# Create all agents        airbnb_agent = Agent(            name="Airbnb",            role="Airbnb Agent",            model=OpenAIChat("gpt-4o"),            tools=[airbnb_client],            instructions=dedent("""\                You are an agent that can find Airbnb listings for a given location.\            """),            add_datetime_to_instructions=True,        )

从Agno的GitHub仓库获取完整的源代码。安装所需的包,完成所有上述配置,然后运行完整的GitHub示例代码,应该会显示类似于此预览的输出。

代码链接:https://github.com/agno-agi/agno/blob/main/cookbook/examples/teams/coordinate/travel_planner_mcp_team.py

效果如下:

14

使用Upsonic 构建MCP智能体

Upsonic是一个用于创建AI智能体的Python框架。使用Upsonic,您可以构建您的代理,定义代理的任务,并使用MCP工具处理每个任务定义,正如下面的示例代码所演示的那样。​​​​​​​

import osfrom dotenv import load_dotenvfrom upsonic import Task, Agent, Directfrom upsonic.client.tools import Search  # Adding Search as a fallback tool
# Load environment variables from .env fileload_dotenv()
# Get the OpenAI API key from environment variablesopenai_api_key = os.getenv("OPENAI_API_KEY")ifnot openai_api_key:raise ValueError("OPENAI_API_KEY not found in .env file")
# Set your OpenAI API key for the sessionos.environ["OPENAI_API_KEY"] = openai_api_key
# Define the HackerNews MCP tool# Using the correct MCP setup for HackerNews based on Upsonic documentationclassHackerNewsMCP:    command = "uvx"    args = ["mcp-hn"]# No environment variables are needed for this MCP
# Create a task to analyze the latest HackerNews stories# Adding Search as a fallback in case HackerNews MCP failstask = Task("Analyze the top 5 HackerNews stories for today. Provide a brief summary of each story, ""identify any common themes or trends, and highlight which stories might be most relevant ""for someone interested in AI and software development.",    tools=[HackerNewsMCP, Search]  # Include both HackerNews MCP and Search tools)
# Create an agent specialized in tech news analysisagent = Agent("Tech News Analyst",    company_url="https://news.ycombinator.com/",    company_objective="To provide insightful analysis of tech industry news and trends")
# Execute the task with the agent and print the resultsprint("Analyzing HackerNews stories...")agent.print_do(task)
# Alternatively, you can use a Direct LLM call if the task is straightforward# print("Direct analysis of HackerNews stories...")# Direct.print_do(task)
# If you want to access the response programmatically:# agent.do(task)# result = task.response# print(result)

在上述示例中,我们在Upsonic中创建了一个AI智能体,用于获取Hackernews中最新的五条新闻。如果你执行pip install upsonic并运行上面的Python代码,你应该会看到类似于此图片的输出。

15

总 结

本教程向大家介绍了MCP,并解释了为什么它在开发者社区中变得如此流行。除了上述内容,我们还在六种不同的Python和TypeScript框架中实现了MCP,用于构建基于大语言模型(LLM)的应用、AI助手和智能体。

然而,MCP的强大之处也伴随着一些挑战。当你为你的项目寻找MCP工具时,可能会发现难以评估或验证其质量,也难以确定其在你的AI项目中的具体应用。这是因为其工具的搜索和发现机制尚未标准化。此外,由于不同的MCP服务器提供商使用不同的架构,其配置也无法提供一致的用户体验。

目前,MCP生态系统正在讨论标准化其各个方面。未来,可能会有一种标准化的方式来安装基于MCP的应用,就像我们用pip安装Python包一样。

最后,希望本教程可以加深大家对MCP的认识!

 

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值