Agent这个名词,做技术的同学都不陌生。
在IT技术领域,Agent指的是“代理”能力,这个“代理”能力概述来说可分为三部分:感知环境、自主决策和执行任务的能力。
举个例子,CICD流水线中的很多任务,都是Agent根据配置好的逻辑规则自动触发执行。包括不同的分支走不同的测试环境,调用哪些技术组件,执行任务的结果通知等。
在AI领域,Agent代指智能体,它同样具备感知环境、做出决策并执行任务的能力,通过感知、决策和行动实现目标。它的核心特征包括:
- 感知能力:获取外部环境信息如视觉、听觉。
- 决策能力:基于感知信息进行推理和规划,选择合适的行动策略。
- 行动能力:执行具体任务或操作,影响环境。
- 学习能力:通过与环境的交互不断改进策略。
AI Agent还可以被理解为“大模型 + 插件 + 执行流程”的结合体,分别对应控制端、感知端和执行端。
截至目前,AI Agent的发展历史可以分为四个阶段,分别是:裸大模型调用、简易Chatbot、多智能体、任务智能体。
一、裸大模型调用
简单理解类似于后端接口调用,直接返回response body。处理逻辑如下图所示:
二、简易Chatbot
Chatbot,即聊天机器人,最出名的应该是ChatGPT了,2022年底横空出世,自此开启了全球AI加速化的浪潮。
Chatbot的实现原理,其实就是在裸大模型调用上封装了一层,从后端接口调用,变成了界面可视化的Chatbot。当然,Chatbot的每一轮对话,都会包含系统提示词+历史对话+最新一轮的用户提示词。处理逻辑如下图所示:
三、多智能体
所谓多智能体,即Multi-agent,Manus就是采用了这种技术实现架构。
Multi-agent可以理解为多个Agent进程/线程并行工作,它们之间通过通信机制进行沟通(例如TCP)。比如metagpt,就是典型的多角色协同(多Agent并行)工作。
四、任务智能体
任务智能体目前可以粗略分为两种类型:短任务智能体、长任务智能体。
- 短任务智能体:追求更快的响应时间,如虚拟人、智能音箱、车载智能座舱。
- 长任务智能体:即需要较长的步骤或时间才能完成任务,通常需要agentflow进行编排。
长任务智能体,还可以细分为两种:
- Copilot类:常见于AI IDE领域,既可以进行人工干预、修改参数,也可以自主选择参考资料,甚至路由。
- Agentic类:这种追求较高的自动化和智能化程度,需要人工干预的环节很少,比如Manus、metagpt、autogpt等。
下面是autogpt的工作流程示意图:
有一些关于AI Agent的概念需要做出澄清,避免大家混淆。
智能体这个概念最初源自Langchain。Langchain是一个很古老的智能体项目,它的重大意义在于提出了智能体的概念,以及组成部分。后面问世的智能体,大多都有Langchain最初的影子。
智能体的主要特征包含如下几个方面:
- 智能体Agent:一个包含AI步骤、能自动完成多不任务的智能程序。
- 步骤/链条Chain:一个有输入有输出,会进行任务处理的步骤链路。
-
- 典型案例:LLMChain,即大模型步骤,当然也包括其他形式的任务处理方式。
- 路由Router:路由规则,决定接下来该执行哪个步骤。
-
- 判断条件,可以是某些数值或者条件,也可以是LLMRouter,即直接问大模型接下来走哪个步骤。
- 工具Tool:基本的工具调用箱,比如日期、搜索、计算等基础功能。
- Tool与Chain的区别在于,工具是在链路调用后会返回到该步骤。
- Run概念:context上下文、status状态等。
最后需要明确的是,智能体和大模型是典型的上下游概念。
Manus(Agent)和DeepSeek(LLM)之间没有任何竞争和对立关系,反而与DeepSeek应用(chatbot)有竞争关系。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓