知名人工智能研究员、畅销书《Python 机器学习》的作者 Sebastian Raschka 最近又写了一本新书 Build a Large Language Model from Scratch !
这本书讲解了从头构建大语言模型的全过程,包括如何创建、训练和调整大语言模型!
Sebastian Raschka 在 GitHub 开源了该书代码库,目前已有 20.9k 的 Star 数。虽然原书尚未出版,但关注度已经超级高了。许多读者和业内人士都想一睹为快。
重磅预告:没错!我们已经拿到这本书的版权!
在 Build a Large Language Model (From Scratch) 这本书中,作者通过简明的文字、直观的图表和具体的实例,逐步揭示了构建大语言模型(LLM)的全过程。
Sebastian Raschka 以深入浅出的方式,从最初的设计和创建,到使用通用语料库进行预训练,直至针对特定任务进行微调,带领读者深刻理解 LLM 的内部工作原理。
对于任何希望在 AI 领域深入发展的学习者来说,这本书无疑是一本不可或缺的参考书籍。
书中具体讲解了如何:
- 规划和编码 LLM 的所有部分;
- 准备适合 LLM 训练的数据集;
- 使用自己的数据微调 LLM;
- 应用指令调整方法来确保 LLM 遵循指令;
- 将预训练权重加载到 LLM 中。
以下为本书目录:
本书评价
Sebastian Raschka @rasbt 所著的 Build a Large Language Model (From Scratch) 对我来说是一份宝贵的资源,它连接了许多点,并激发了无数的“啊哈”时刻。这本书强烈推荐给那些希望了解大语言模型实践经验的人。
——Faisal Alsrheed,AI 研究员
在学习新概念时,如果我能从头开始就自己写代码实现,这会让我在理解和学习知识的过程中更有信心。大多数教程倾向于涵盖高层次的概念,而忽略了一些细节,当你尝试将这些概念转化为代码时,这些细节的缺失就会明显感觉到。这就是为什么我非常欣赏 Sebastian Raschka 博士的最新书籍 Build a Large Language Model (From Scratch) 。 在大多数 LLM 实现倾向于使用高级包(如transformers, timm)的时代,看到通过使用基本的 PyTorch 元素逐步开发 LLM 的核心构建块,真是令人耳目一新。这也让你意识到,一些最先进的 LLM 的核心构建块可以简化为相对简单的概念。
——Roshan Santhosh,Meta 数据科学家
关于作者
Sebastian Raschka 从事机器学习和人工智能研究已有十多年。2022 年,Sebastian 加入了 Lightning AI,目前专注于人工智能和大语言模型(LLM)的研究、开发开源软件以及撰写图书。
在此之前,Sebastian 在威斯康星大学麦迪逊分校统计系担任助理教授,专注于深度学习和机器学习研究。他对教育充满热情,并且以其使用开源软件撰写的机器学习畅销书籍而广为人知。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓