关于基于RAG技术的智能客服系统解决方案

 构建一个合格好用的智能客服是很多中小企业急需的市场需求。

客服系统在现代商业体系中扮演着重要的角色,不论任何领域任何行业都离不开客服的存在;虽然客服系统经过多年的实践与发展,但依然存在各种各样的问题。

而随着互联网技术的发展,特别是目前基于自然语言处理的大模型技术的发展,为客服系统提供了新的解决方案;其主要优势就在于基于大模型的智能客服系统能够快速响应,快速回复,能够做到7*24小时不间断待命状态,而这是传统客服所无法具备的优势。

虽然传统客服可以依靠庞大的人力系统解决7*24小时待命问题,但需要大量的客服人员,以及由此衍生出来的客服培训,管理,以及成本等问题。

而有了智能客服系统之后,就可以解决传统客服所面临的人力成本和管理成本等问题。

图片

基于RAG的智能客服系统

客服系统本质上是一套对话系统,其存在形式有多种,如电话,在线客服平台,以及微信等社交工具。

用户在对企业产品或服务存在疑问时,则可以通过客服系统咨询产品功能或服务内容;完善的客服系统不但能够维持良好的企业形象,同时也能增加用户的信任度,对后续产品的营销,销售等产生良好的营销;因此客服系统对企业的重要性不言而喻。

但同样客服也存在很多问题,特别是对中小企业来说;大型企业有足够的资金,技术以及人力来打造专有的客服系统;但对中小企业来说,维护一个专业的客服系统是不可承受之重。

作为客服人员来说,不仅仅只是能够接打电话以及在线聊天回复,同时还要了解企业的产品和服务,对产品类型,功能,优缺点了如指掌,否则就不是一个合格的客服人员。

虽然在现实经营中,大家都认为客服人员的门槛很低,甚至是个人都能干;但从实际情况来看,要想培养出一批专业的客服人员却并不是一件简单的事情。

而技术发展的目的就是为了解决成本问题和提高效率,因此基于人工智能大模型构建的智能客服系统就可以尽可能的解决中小企业所面临的客服困境。

只需要基于RAG系统开发一套客服服务平台,那么企业只需要通过平台提供的文件上传功能;把企业的介绍,产品信息以及各种资料上传到服务平台;这时客服系统借助RAG技术,来实现智能问答;这样就可以大大节省企业成本,达到快速7*24小时快速响应的目的。

从功能上来说,一个完善的客服系统至少需要拥有以下几个功能:

用户管理

商户管理

资料管理

文档处理

文档检索

渠道管理

后台管理

等等多个功能模块;

而从技术架构上来说,需要有大模型,向量检索,文档处理,权限管理,用户管理等模块组成。

当然,RAG技术不仅仅只能应用于智能客服系统;同样可以应用于搜索引擎,智能助手,文档生成等多个领域。

如果从纯粹的技术角度来看,基于RAG构建智能客服系统,主要包括三个方面,也就是RAG的三个主要构成模块:

文档的加载与处理,用户上传文档类型各式各样,可能同时包括word,pdf,excel,图片表格等多种类型的数据,因此怎么把这些数据在不影响语义和结构完整性的情况下,保存到资料库中是一件比较复杂的问题。

其次,资料的召回,RAG的本质就是从外部加载数据并导入到大模型中,使大模型能够根据这些数据回答用户的疑问;但怎么准确并快速的召回数据,一是需要考虑文档处理的质量,其次就要考虑召回的策略。

不同的召回策略可能会得到完全不同的召回效果,因此召回策略是一个需要认真考虑的问题。

最后,就是生成模型的选择,不同的模型效果不尽相同,性能越好的模型对文档的总结提炼就更准确,效果当然就会越好。

当然,RAG技术并不是万能的,所谓的智能客服系统也不是绝对的;因此,可能还是需要配合部分人工客服,当智能客服无法解决的时候,就可以由人工客服直接介入。

但从成本和效果的角度来看,智能客服能够节约大量成本,并且能够解决用户百分之八十以上的问题,而这才是智能客服存在的意义。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值