二: 各个大模型的优缺点及适用场景介绍
1.NNI
优点:全面支持机器学习生命周期的各个环节,易于上手,开发者友好。
缺点:可能对于特定领域或特定问题的优化不够深入。
适用场景:各种机器学习项目,尤其是神经网络相关的项目。
2.AdaNet
优点:轻量级,易于使用,能够创建高质量的模型,节省选择神经网络架构的时间。
缺点:对于特定问题的优化可能不如专业模型深入。
适用场景:需要快速原型设计和模型迭代的场景。
3.SAIL 7B
优点:基于LLaMa的搜索增强模型,具有强大的搜索和学习能力。
缺点:模型参数较大,可能需要较高的计算资源。
适用场景:处理大量搜索和查询任务的场景。
4.Vicuna-13B
优点:高效的对话生成能力,广泛应用于多个行业。
缺点:可能对于特定领域的专业对话生成不够深入。
适用场景:客户服务、医疗保健、教育、金融和旅游/酒店等行业。
5.Yi系列模型
优点:强大的双语能力和多模态处理能力,卓越的语言理解、常识推理和阅读理解等能力。
缺点:可能对于特定领域的专业术语和知识理解不够深入。
适用场景:需要处理多语言和多模态数据的场景,如跨语言翻译、多模态内容生成等。
6.BERT (Bidirectional Encoder Representations from Transformers)
优点:BERT 能够处理双向上下文,更好地理解语言语境。在各种自然语言处理任务上显示出非常强大的性能。
缺点:BERT 模型较大,需要较多的计算资源和时间进行训练。
适用场景:适用于各种NLP任务,如文本分类、命名实体识别、句子相似度等。
7.GPT (Generative Pre-trained Transformer)
优点:GPT 模型具有出色的生成能力,在对话系统、摘要生成等任务中表现突出。
缺点:GPT 模型通常只能单向进行生成,可能会受到上下文信息的限制。
适用场景:适合需要生成文本的任务,如对话生成、文章摘要等。
8.RoBERTa (A Robustly Optimized BERT Approach)
优点:RoBERTa 在各种NLP任务上展现出更加强大的性能和泛化能力。
缺点:需要大量的计算资源进行训练和微调。
适用场景:适用于需要高性能和泛化能力的NLP任务,如情感分析、语义理解等。
三:其它热门大模型项目
PyTorch Hub:
介绍: PyTorch Hub 提供了许多流行的预训练模型,包括图像分类、自然语言处理等领域的模型。
链接: https://pytorch.org/hub/
Hugging Face Transformers:
介绍: Hugging Face Transformers 是一个提供各种预训练模型的开源库,包括BERT、GPT、RoBERTa等。
链接: https://gitcode.com/huggingface/transformers/overview
Fairseq:
介绍: Fairseq 是Facebook AI Research发布的序列到序列模型工具包,支持NLP任务和机器翻译等。
链接: https://gitcode.com/facebookresearch/fairseq/overview
TensorFlow Models:
介绍: TensorFlow Models 包含了许多流行的机器学习模型和算法的实现,涵盖了图像、文本、语音等领域。
链接: https://gitcode.com/tensorflow/models
T5 (Text-to-Text Transfer Transformer):
介绍:由Google Research提出,可应用于多种NLP任务,如文本生成、翻译等。
链接:https://gitcode.com/google-research/text-to-text-transfer-transformer
OpenAI Codex:
介绍:基于GPT技术,能够编写代码、回答问题等多用途的自然语言生成模型。
链接:暂时仅有商业访问权限,属于OpenAI产品之一。
**SAIL 7B:**基于LLaMa的搜索增强模型,参数为7B。具有强大的搜索和学习能力,适用于需要处理大量搜索和查询任务的场景。链接:SAIL-7b
四:国内开源大模型
讯飞星火认知大模型:
开源地址:xinghuo.xfyun.cn/
介绍:科大讯飞研发的以中文为核心的新一代认知智能大模型,具备文本生成、语言理解、知识问答、逻辑推理、数学能力、代码能力和多模态能力等七大核心能力。
特点:讯飞星火可以在与人自然的对话互动过程中,提供多风格多任务长文本生成、多层次跨语种语言理解、基于思维链的推理能力等多种能力。
文心一言大模型:
开源地址:yiyan.baidu.com/
介绍:百度研发的AI大模型,可以听懂潜台词、复杂句式、专业术语等复杂提示词,也能胜任代码理解与调试任务。
特点:文心一言具备多模态生成能力,支持图像生成和处理、语音合成、语音识别和音频分类等功能,还可以对视频数据进行处理或将文本转化为动态图像序列完成视频分类、目标检测等任务。
智谱清言(ChatGLM):
开源地址:chatglm.cn/
介绍:清华系智谱AI开发的对话语言模型,支持多轮对话、内容创作、信息归纳总结、代码生成、绘画、识图等多模态能力。
特点:智谱清言是一个千亿参数对话模型,已更新到ChatGLM3,支持PC端、手机端及网页使用。
KimiGPT:
开源地址:kimi.moonshot.cn/
介绍:由国内初创公司"月之暗面"研发的大模型,支持超长的输入和输出能力,并具有联网能力和读文件能力。
特点:KimiGPT在处理长文本方面有很大的优势,可以从互联网上获取最新的信息和数据,也可以访问用户提供的链接进行阅读。
Mistral-7B×8-MoE:
链接地址:https://www.modelscope.cn/home
介绍:Mistral AI在2023年12月8日开源了首个MoE大模型Mistral-7B×8-MoE。
特点:Mistral-7B×8-MoE是一个稀疏的混合专家网络,是一个纯解码器模型。该模型在多个评测任务上表现优异,包括常识推理、世界知识、阅读理解、数学和代码生成等领域,甚至在某些任务上超越或匹配了其他大型模型如Llama 2 70B和GPT-3.5。
ChatGLM-6B:
开源地址:https://gitcode.com/THUDM/ChatGLM-6B
介绍:ChatGLM-6B是一个开源的、支持中英双语的对话语言模型,基于General Language Model (GLM) 架构,具有62亿参数。
特点:结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4量化级别下最低只需6GB显存)。ChatGLM-6B使用了和ChatGPT相似的技术,并针对中文问答和对话进行了优化。
Colossal-AI:
开源地址:https://gitcode.com/hpcaitech/ColossalAI
介绍:Colossal-AI是一个国产开源项目,主要致力于加速各种大模型的训练。
特点:与PyTorch和业界主流的DeepSpeed方法相比,Colossal-AI能显著提升参数容量,使得RTX 2060 6GB的普通游戏本能训练15亿参数的模型,而RTX 3090 24GB的主机甚至能直接训练180亿参数的大模型。
这些热门的开源大模型项目提供了丰富的资源和模型供开发者使用,并且得到了广泛的关注和支持。通过探索这些项目,可以更好地了解当前大模型领域的最新进展和应用场景。
以上每种模型都有其独特的优势和限制,选择适合特定任务和场景的模型需要综合考量模型的特点、应用需求以及可用资源等因素。
介绍的这些开源大模型都能在各自的领域中发挥重要作用,但选择最适合的模型应基于具体应用场景、资源可用性以及任务要求等因素进行综合考量。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。