前言
AI智能体通过感知环境、自主决策和执行任务,突破传统大模型仅限于语言交互的局限。例如,当用户指令“订一张明天去北京的机票”时,智能体不仅理解语义,还能自动调用航班查询接口、完成支付并同步至日程系统。这种能力使其在客服、医疗、智能制造等领域展现出颠覆性潜力。
然而,智能体的开发长期受制于接口碎片化与工具兼容性难题。开发者需为不同数据源编写适配代码,导致60%的开发周期浪费在系统对接上。这一痛点催生了MCP协议的诞生。MCP(Model Context Protocol,模型上下文协议)由Anthropic于2024年底开源,其核心是通过标准化接口实现大模型与外部工具的“即插即用”。类比互联网的TCP/IP协议,MCP构建了AI交互的通用语言。
本文将介绍如下内容:
-
• 开发MCP Server实现微信消息发送
-
• 开发MCP Server实现获取天气
-
• 基于Dify搭建智能体实现获取天气并通过微信发送给好友
开发MCP Server实现微信消息发送
以windows开发环境为例:
1) 设置开发环境
安装uv。uv是一个用Rust编写的极其快速的Python包和项目管理器。
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
创建python虚拟环境(假设项目目录为wechat)
# Create a new directory for our project
uv init wechat
cd wechat
# Create virtual environment and activate it
uv venv
.venv\Scripts\activate
# Install dependencies
uv add mcp[cli] wxauto
如果在执行.venv\Scripts\activate时报错“无法加载.venv\Scripts\activate.ps1,因为在此系统上禁止运行脚本”,需要以管理员权限在终端执行
Set-ExecutionPolicy RemoteSigned
更改执行策略后再重新执行。
2) Server实现代码
wxauto
是一个基于UIAutomation
的开源Python微信自动化库。你需要在本机安装微信PC版本并完成扫码登录(注意wxauto只兼容3.9.x的微信PC版本)
通过mcp python SDK结合wxauto开发自动发送微信消息的MCP Server是很容易的。
main.py的代码如下(注意mcp server端口用默认的8000):
from mcp.server.fastmcp import FastMCP
from wxauto import WeChat
# Initialize FastMCP server
mcp = FastMCP(port=8000)
wx = WeChat()
@mcp.tool()
async def send_wechat_msg(msg: str, who: str) -> str:
"""send wechat text message"""
wx.ChatWith(who)
wx.SendMsg(msg, who)
return "success"
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport="sse")
3) 启动Server
uv run main.py
开发MCP Server实现获取天气
1) 设置开发环境
创建python虚拟环境(假设项目目录为weather)
# Create a new directory for our project
uv init weather
cd weather
# Create virtual environment and activate it
uv venv
.venv\Scripts\activate
# Install dependencies
uv add mcp[cli] httpx
2) Server实现代码
main.py的代码如下(注意mcp server端口调整为8001):
import httpx
import urllib.parse
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP(port=8001)
@mcp.tool()
async def get_weather(location: str) -> str:
"""Get weather for a location."""
url = "http://weather.cma.cn/api/autocomplete?q=" + urllib.parse.quote(location)
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, timeout=10.0)
response.raise_for_status()
data = response.json()
if data["code"] != 0:
return "系统错误,请稍后重试"
location_code = ""
for item in data["data"]:
str_array = item.split("|")
if (
str_array[1] == location
or str_array[1] + "市" == location
or str_array[2] == location
):
location_code = str_array[0]
break
if location_code == "":
return "没找到该位置的信息"
url = f"http://weather.cma.cn/api/now/{location_code}"
response = await client.get(url, timeout=10.0)
response.raise_for_status()
return response.json()
except Exception:
return "系统错误,请稍后重试"
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport="sse")
3) 启动Server
uv run main.py
基于Dify搭建智能体实现获取天气并通过微信发送给好友
Dify是一款开源的大语言模型应用开发平台,旨在降低AI应用的开发门槛,帮助开发者和企业快速构建、部署及管理生成式AI应用。
假设已经通过Docker Desktop for Windows安装Dify。
1) 安装MCP插件
点击右上角“插件”按钮,进入插件页面,选择“探索Marketplace”,搜索mcp,选择插件"MCP SSE / StreamableHTTP"进行安装。
2) 设置MCP服务
切换到"插件"tab,选择已经安装的插件"MCP SSE / StreamableHTTP",点击“去授权”
填上MCP服务配置:
获取天气和发送微信消息是两个独立的mcp server,配置如下:
{"wechat_server":{"url":"http://host.docker.internal:8000/sse","headers":{},"timeout":50,"sse_read_timeout":50},"weather_searver":{"url":"http://host.docker.internal:8001/sse","headers":{},"timeout":50,"sse_read_timeout":50}}
3) 创建Agent应用
- • 创建一个空白应用,类型为Agent
- • 添加MCP工具到Agent
- • 设置系统提示词
你是一个超级助理,可以通过调用MCP工具完成各种任务。为了获得MCP工具列表,必须先通过mcp_sse_list_tools获取
- • 选择大模型(例如:qwen-plus),并输入测试语句进行调试预览
输入“把广州的天气情况通过微信发送给张三”,Agent会查询天气,并将天气信息通过微信发送给张三
总结
基于Dify搭建的智能体案例,不仅展示了从语义理解到工具调用的完整决策链路,更印证了MCP协议在降低开发成本和加速应用落地方面的工程意义。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】