23年 AI 大模型技术狂飙一年后,24年 AI 大模型的应用已经在爆发,因此掌握好 AI 大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份 AI 大模型详细的学习路线就变得非常重要!
由于 AI 大模型应用技术比较新,业界也没什么参照标准,打造 AI 大模型技术的学习路线并非一件容易的事,我和团队花费了6个多月时间,边整理、边摸索、边实践打造了业界首份 AI 大模型学习路线。
这份完整的AI大模型学习路线,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
AGI大模型应用开发学习路线
第一阶段 · 大模型开发基础
第一章:AI新篇章
- 为什么要学习大模型开发?
- 需要准备的工具和环境
第二章:大模型的训练与应用
- 大模型发展史
- 从大模型预训练、微调到应用
- GPT结构剖析
- 大模型家族、类别、应用场景
- RAG,Agent与小模型
第三章:大模型实操与API调用
- 通过API调用大模型
- 单论对话与多轮对话调用
- 开源模型与闭源模型调用
- ChatGLM,Baichuan,Yi-34B调用
- GPT,LLaMA模型调用
- 模型的部署、容器化
第四章:提示工程技术(1)
- 提示词的常见结构
- 提示词的模版化
- Zero-shot与Few-shot
- In-context learning
- Chain of thought prompting
第五章:提示工程技术(2)
- Tree of thought prompting
- Graph of thought promting
- Self-consistency
- Active-prompt
- Prompt chaining
第二阶段 · RAG基础与架构
第六章:RAG基础与架构
- 为什么需要RAG?
- RAG的经典应用场景
- RAG的经典结构与模块
- 向量数据库
- 检索与生成
第七章:【项目实战】基于RAG的PDF文档助
- 产品介绍与核心功能
- 技术方案与架构设计
- 文档读取和解析
- 文档的切分和文档向量化
- query搜索与文档排序
- 提示模版与大模型API接入
- 模型部署与Web应用
第八章:文档切分常见算法
- 根据每个Sentence切分
- 根据固定字符数切分
- 根据固定sentence数切分
- 根据递归字符来切分
- 根据语义相似度来切分
第九章:向量数据库常见算法
- 常用向量数据库以及类别
- 向量数据库与索引算法
- 到排表与搜索优化
- KNN与近似KNN
- Product Quantization
第十章:向量数据库算法进阶- HSNW
- HSNW算法在索引中的重要性
- NSW算法解读
- NSW图中的搜索问题
- Skip List讲解
- 具有层次结构的NSW
第十一章:【项目实战】基于RAG的新闻推荐
- 推荐系统原理、应用场景以及架构剖析
- 传统推荐算法与基于LLM推荐算法
- 新闻数据的准备与整理
- 推荐中的召回与精排
- 精排与Prompt构建
- 模型部署与测试
第三阶段 · RAG与LangChain
第十二章:LangChain基础应用
- 为什么需要LangChain?
- 通过一个小项目快速理解各个模块
- LangChain调用模型
- PromptTemplate的应用
- 输出格式设定
- Pydantic Object设计
第十三章:理解Function Calling
- 什么是 Function Calling
- 自定义输出结构
- 基于OpenAI调用Function Calling
- Function Calling的稳定性
- LangChain与Function Calling
第十四章:LangChain与Retrieval组件
- Document Loaders
- Text Splitters
- Text Embedding模型
- 常用的向量数据库调用
- 常用的Retriever
第十五章:LangChain与Chain组件
- 为什么需要Chain?
- LLMChain, Sequential Chain
- Transform Chain
- Router Chain
- 自定义Chain
第十六章:Advanced RAG(1)
- 经典RAG的几个问题
- Self-querying retrieval
- MultiQuery retriever
- Step-back prompting
- 基于历史对话重新生成Query
- 其他Query优化相关策略
第十七章:Advanced RAG(2)
- Sentence window retrieval
- Parent-child chunks retrieval
- Fusion Retrieval
- Ensemble Retrieval
- RPF算法
第十八章:基于RAGAS的RAG的评估
- 为什么需要评估RAG
- RAG中的评估思路
- 评估指标设计
- 套用在项目中进行评估
- RAGAS评估框架的缺点
第十九章:实战基于Advanced RAG的PDF问答
- 需求理解和系统设计
- 经典RAG架构下的问题
- 检索器优化
- 生成器优化
- 系统部署与测试
第四阶段 · 模型微调与私有化大模型
第二十章:开源模型介绍
- 模型私有化部署的必要性
- 中英开源模型概览与分类
- ChatGLM, Baichuan,Yi等中文开源模型
- LLaMA,Mistral系列英文开源模型
- 微调所需要的工具和算力
第二十一章:模型微调基础
- 判断是否需要模型微调
- 模型微调对模型的影响和价值
- 选择合适的基座模型
- 数据集的准备
- 微调训练框架的选择
第二十二章:GPU与算力
- GPU与CPU
- GPU的计算特性
- 微调所需要的算力计算公式
- 常见GPU卡介绍与比较
- 搭建GPU算力环境
第二十三章:高效微调技术-LoRA
- 全量微调与少量参数微调
- 理解LoRA训练以及参数
- PEFT库的使用
- LoRA训练硬件资源评估
- 认识QLoRA训练
第二十四章:【项目实战】基于ChatGLM-6B+LoRA对话微调模型
- 理解ChatGLM模型家族以及特性
- 导入模型以及tokenizer
- 设计模型参数以及LoRA参数
- 训练以及部署微调模型
- 测试微调模型
第五阶段 · Agent开发
第二十五章:Agent开发基础
- 什么是Agent
- 什么是Plan, Action, Tools
- 经典的Agent开源项目介绍
- 编写简单的Agent程序
- Agent目前面临的挑战与机遇
第二十六章:自定义Agent工具
- LangChain所支持的Agent
- 什么需要自定义Agent
- @tool decorator的使用
- 编写自定义Agent工具
- 编写完整的Agent小项目
第二十七章:深入浅出ReAct框架
- 回顾什么是CoT
- CoT和Action的结合
- 剖析ReAct框架的Prompt结构
- 从零实现ReAct(from Scratch)
- ReAct框架的优缺点分析
第二十八章:【项目实战】开源Agent项目
- 开源Agent项目以及分类
- AutoGPT项目讲解
- MetaGPT项目讲解
- 其他开源项目
- Agent技术目前存在的问题
第二十九章:深度剖析Agent核心部件
- Agent的planning
- Agent的reasoning
- Agent的knowledge
- Agent的memory
- Agent的泛化能力
第三十章:【项目实战】基于Agent的AI模拟面试
- 需求设计和系统设计
- 工具的设计
- AI面试中的深度询问方案设计
- 提示工程设计
- Memory的设计
- 智能体开发与部署
第三十一章:Agent其他案例分享
- AI旅游规划师
- AI产品销售
- AI房租推荐
- AI图像处理
- AI网站开发
第三十二章:其他Agent前沿应用
- 多个Agent的协同
- Agent的group行为
- Agent Society
- Agent的Personality
- 斯坦福小镇案例
第六阶段 · 智能设备与“小”模型
第三十三章:智能设备上的模型优化基础
- 智能设备特性以及资源限制
- 模型优化的必要性
- 常见的模型压缩技术
- 轻量级模型架构介绍
- 开源小模型
第三十四章:模型在智能设备上的部署
- 多大的模型适合
- 部署流程概述
- 模型转换工具
- 模型部署实战
- 性能测试与优化
第三十五章:边缘计算中的大模型挑战与机遇
- 边缘计算的概念和重要性
- 模型所要满足的要求与性能上的平衡
- 模型在边缘设备上的应用案例
- 未来“小”模型发展趋势
- 24年“小”模型机会
第七阶段 · 多模态大模型开发
第三十六章:多模态大模型基础
- 什么是多模态模型
- 多模态的应用场景
- DALLE-3与Midjourney
- Stable Diffusion与ControlNet
- 语音合成技术概述
- 主流TTS技术剖析
第三十七章:多模态模型项目剖析
- 多模态大模型最新进展
- Sora对多模态大模型会产生什么影响
- 案例:MiniGPT-4与多模态问答
- 案例:BLIP与文本描述生成
- 案例:Video-LLaVA与多模态图像视频识别
第三十八章:大模型的挑战与未来
- 大模型技术局限性
- 大模型的隐私性和准确性
- 大模型和AGI未来
- GPT商城的机会
- 多模态的机会
- 对于开发工程师未来的启示
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。