LangChain结合LLM做RAG文档搜索

我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现“幻觉”。针对“幻觉”问题,一般的解决方案是采用RAG做检索增强。

但是我们不可能把所有数据都丢给LLM去学习,比如某个公司积累的某个行业的大量内部知识。此时就需要一个私有化的文档搜索工具了。

本文聊聊如何使用LangChain结合LLM快速做一个私有化的文档搜索工具。之前介绍过,LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。自然,它有这方面的成熟解决方案。还会向介绍下302.AI的使用,尤其是API对接这块。

1. RAG检索流程

使用 LangChain 实现私有化文档搜索的主要流程,如下图所示:

文档加载 → 文档分割 → 文档嵌入 → 向量化存储 → 文档检索 → 生成回答

2. 代码实践细节

2.1. 文档加载

首先,我们需要加载文档数据。文档可以是各种格式,比如文本文件、PDF、Word 等。使用 LangChain,可以轻松地加载这些文档。下面以PDF为例:

from langchain_community.document_loaders import PyPDFLoader

loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()

2.2. 文档分割

加载的文档通常会比较大,为了更高效地处理和检索,我们需要将文档分割成更小的段落或句子。LangChain 提供了便捷的文本分割工具,可以按句子、块长度等方式分割文档。

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=50,
    chunk_overlap=20,
    separators=["\n", "。", "!", "?", ",", "、", ""],
    add_start_index=True,
)
texts = text_splitter.split_documents(docs)

分割后的文档内容可以进一步用于生成向量。

2.3. 文档嵌入 Embeddings

文档分割后,我们需要将每一段文本转换成向量,这个过程称为文档嵌入。文档嵌入是将文本转换成高维向量,这是相似性搜索的关键。这里我们选择OpenAI的嵌入模型来生成文档的嵌入向量。

from langchain_openai import OpenAIEmbeddings

embeddings_model = OpenAIEmbeddings(
    openai_api_key="sk-xxxxxxxxxxx",
    openai_api_base="https://api.302.ai/v1",
)

txts = [txt.page_content for txt in texts]

embeddings = embeddings_model.embed_documents(txts)

2.4. 文档向量化存储

接下来,我们需要将生成的向量化的文档,存入向量数据库中。向量数据库主要用来做相似性搜索,可以高效地存储和检索高维向量。LangChain 支持与多种向量数据库的集成,比如 Pinecone、FAISS、Chroma 等。

本文以FAISS为例,首先需要安装FAISS,直接使用pip install faiss-cpu安装。

from langchain_community.vectorstores import FAISS

db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")

2.5. 文档检索

当用户提出问题时,我们需要在向量数据库中检索最相关的文档。检索过程是计算用户问题的向量表示,然后在向量数据库中查找与之最相似的文档。最后将找到的文档内容,拼接成一个大的上下文。

向量数据库的检索支持多种模式,本文先用最简单的,后续再出文章继续介绍别的模式。

from langchain.retrievers.multi_query import MultiQueryRetriever

retriever = db.as_retriever()
# retriever = db.as_retriever(search_type="similarity_score_threshold",search_kwargs={"score_threshold":.1,"k":5})
# retriever = db.as_retriever(search_type="mmr")
# retriever = MultiQueryRetriever.from_llm(
#             retriever = db.as_retriever(),
#             llm = model,
#         )

context = retriever.get_relevant_documents(query="张学立是谁?")

_content = ""
for i in context:
    _content += i.page_content

2.6. 将检索内容丢给LLM作答

最后,我们需要将检索到的文档内容丢入到 prompt 中,让LLM生成回答。LangChain 可以PromptTemplate模板的方式,将检索到的上下文动态嵌入到 prompt 中,然后丢给LLM,这样可以生成准确的回答。

from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

question = "张学立是谁?"
template = [
    (
        "system",
        "你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",
    ),
    ("human", "你好!"),
    ("ai", "你好"),
    ("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)

messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)

output_parser = StrOutputParser()
output_parser.invoke(response)

2.7. 完整代码

最后,将以上所有代码串起来,整合到一起,如下:

from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser

model = ChatOpenAI(
    model_name="gpt-3.5-turbo",
    openai_api_key="sk-xxxxxxx",
    openai_api_base="https://api.302.ai/v1",
)

loader = PyPDFLoader("./GV2.pdf")
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=50,
    chunk_overlap=20,
    separators=["\n", "。", "!", "?", ",", "、", ""],
    add_start_index=True,
)
texts = text_splitter.split_documents(docs)

embeddings_model = OpenAIEmbeddings(
    openai_api_key="sk-xxxxxxx",
    openai_api_base="https://api.302.ai/v1",
)
txts = [txt.page_content for txt in texts]
embeddings = embeddings_model.embed_documents(txts)

db = FAISS.from_documents(texts, embeddings_model)
FAISS.save_local(db, "faiss_db2")

retriever = db.as_retriever()

template = [
    (
        "system",
        "你是一个处理文档的助手,你会根据下面提供<context>标签里的上下文内容来继续回答问题.\n 上下文内容\n <context>\n{context} \n</context>\n",
    ),
    ("human", "你好!"),
    ("ai", "你好"),
    ("human", "{question}"),
]
prompt = ChatPromptTemplate.from_messages(template)

question = "张学立是谁?"
context = retriever.get_relevant_documents(query=question)
_content = ""
for i in context:
    _content += i.page_content

messages = prompt.format_messages(context=_content, question=question)
response = model.invoke(messages)

output_parser = StrOutputParser()
output_parser.invoke(response)

2.8. 总结

通过 LangChain可以轻松实现私有化文档搜索,充分利用LLM的能力来处理和检索文档信息。按照文中的步骤,你也可以轻松实现。

好的问答系统离不开优秀的LLM,根据我的个人经验,OpenAI的大模型能力排名是Top1的。但是使用OpenAI不方便,不但需要梯子而且还不稳定。

一款好的LLM摆在面前,却用不了,着实头疼。有没有方便稳定的方式呢?当然有啦,302.AI是一款AI自助平台,不但有问答机器人、文生图机器人、文生视频机器人,还有常见的LLM API。

  • 10
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值