自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2053)
  • 收藏
  • 关注

原创 大模型技术全面解析:从架构到微调,收藏必学!

本文全面解析了大语言模型(LLM)的核心技术,涵盖语言建模基础、预训练挑战、分布式训练方法及微调技术。重点介绍了参数高效微调(PEFT)方法如适配器、LoRA和QLoRA,以及提示工程、模型压缩技术(量化、蒸馏、剪枝)等。文章深入探讨了Transformer架构、推理参数配置和各类优化技术,为开发者提供了从理论到实践的完整指南,帮助读者掌握大模型应用与优化的关键技术。

2026-01-10 11:35:22 390

原创 【必看收藏】LangChain生态系统全解析:从入门到精通,小白也能掌握的AI应用开发完整指南

LangChain生态系统已从单一框架发展为包含LangChain(开发框架)、LangGraph(状态管理)和LangSmith(监控部署)的完整平台。通过分层架构解决了AI开发的复杂性、可维护性和生产部署挑战,开发者可根据项目复杂度选择合适工具组合,实现从原型到生产部署的平滑过渡,代表AI开发向工业化生产的转变。

2026-01-10 11:31:44 285

原创 【必收藏】大模型核心技术揭秘:文本向量化与信息检索完全指南

文章介绍文本向量化(embedding)和信息检索技术,这些是RAG的基础。对比了三种embedding类型:稀疏嵌入(关键词匹配)、密集嵌入(语义理解)和学习型稀疏嵌入(结合两者优点)。重点讲解BGE-M3模型原理及应用,以及rerank技术在检索结果重排序中的应用,为大模型应用提供技术基础。

2026-01-10 11:28:51 382

原创 程序员必学!大模型微调方法详解:从SFT到GKD,一篇搞定

文章通过类比教小孩写作业,详解了6种大模型微调方法:SFT(照抄标准答案)、PPO(评分老师把关)、DPO(人类直接选好坏)、GRPO(从一组中选最优)、DAPO(兼顾多样性和质量)和GKD(强模型带弱模型)。这些方法从简单到复杂,从单一到多样,体现了大模型微调"让模型越来越懂人类"的演进方向,最终形成了传统标准派PPO、当下顶流派DPO和新兴潜力派GRPO三大主流方案。

2026-01-10 11:17:02 371

原创 【必学收藏】LangChain全生命周期管理:从调试追踪到部署监控的实战指南

本文详细介绍LangChain应用从开发到生产的关键实践,重点讲解LangSmith可视化调试与追踪工具的使用方法,展示如何评估RAG系统性能,介绍LangServe快速构建API接口的部署方式,以及生产环境中的监控和日志管理策略。通过实际操作案例,帮助开发者掌握大模型应用全生命周期管理,确保系统稳定、高效运行。

2026-01-10 11:06:33 136

原创 解锁大模型潜能:Context Engineering上下文工程完全指南(强烈推荐收藏)

Context Engineering是优化大模型输入内容的关键技术。文章提出四大核心策略:保存Context(信息持久化)、选择Context(静态/动态筛选相关内容)、压缩Context(精简保留关键信息)和隔离Context(避免信息干扰)。这些方法能帮助 开发者在有限上下文窗口内提升模型回答质量,降低成本,是提高AI系统性能的重要手段。

2026-01-10 10:48:41 293

原创 AI Agent深度解析:从理论到实践,大模型开发者必学必收藏指南

文章介绍了AI Agent作为人工智能进化的下一步,从"会思考"到"会行动"的智能体,具备感知、决策、执行和学习的能力。与传统AI不同,AI Agent能自主拆解任务、调用工具并完成执行,已在办公、开发、工业等多个领域落地应用。在工业场景中,AI Agent可实现数据采集、智能分析和自动控制,提高效率、减少能耗。文章还提供了大模型学习资源,帮助开发者掌握这一前沿技术。---

2026-01-09 10:49:15 573

原创 【收藏必备】上下文工程:超越RAG的大模型优化新思路,彻底解放AI潜力

上下文工程是设计和优化输入大模型的上下文信息的科学与艺术,解决传统RAG方法的局限性。它包含数据准备、检索优化和上下文构建等流程,通过上下文压缩、结构化排序和系统提示设计,确保输入信息的高相关性、质量和可理解性。上下文工程不等同于简单增加上下文长度,而是追求深度加工和自动化,是解锁大模型真正潜力的关键,未来可能彻底告别人工调优。

2026-01-09 10:40:57 623

原创 【必藏】大模型参数高效微调技术全解析:从入门到实战

大语言模型在垂直领域适应性不足,传统微调计算成本高。参数高效微调(PEFT)通过三类策略解决此问题:参数附加法添加少量可训练模块;参数选择法仅微调关键参数;低秩适配法使用低秩矩阵近似更新。PEFT显著降低计算和存储成本,提高适应性,使模型在资源受限环境下也能有效定制,适合企业和个人开发者快速部署大模型应用。

2026-01-09 10:33:38 560

原创 【必收藏】前端开发者AI Agent完全指南:从LLM到多模态的实战学习路径

文章从前端开发视角介绍AI Agent开发所需知识,包括LLM大语言模型原理、提示词工程、LangChain.js框架应用、RAG检索增强生成技术、Agent工作流设计、MCP模型上下文协议及多模态处理能力。文章强调AI技术正快速落地各行各业,提供了系统化的学习路径和资源,帮助开发者掌握大模型核心技能,抓住AI时代机遇。

2026-01-09 10:26:59 866

原创 2026年RAG系统精度提升完全指南:从入门到企业级应用必备收藏

本文系统分析了企业级RAG系统面临的五大挑战,包括历史数据问题、文档分块、向量检索局限、图表理解瓶颈和流程缺乏灵活性。针对这些问题,提出了全面的精度提升方案,涵盖基础优化、混合检索技术、知识图谱集成及AI Agent融合等方法。通过这些实战技巧,可有效解决RAG系统在企业应用中的精度问题,构建更智能、可靠的知识检索与问答系统,适合开发者收藏参考。

2026-01-09 10:18:35 515

原创 【深度收藏】AI大模型学习指南:为何说当今AI生态与30年前互联网如此相似?

本文从产品经理视角详解AI十大核心概念:神经网络、RAG、Agent、MCP等,深入浅出剖析大模型底层逻辑与技术架构。强调理解这些知识对构建AI原生产品的重要性,指出AI生态与早期互联网相似,正经历数字物种大爆发。文末提供免费AI学习资源,助力小白和程序员系统掌握大模型技术。

2026-01-09 10:15:19 450

原创 大模型入门必读:预训练语言模型与通用文本嵌入技术详解(建议收藏)

本文系统介绍了文本嵌入技术在NLP任务中的应用,以及预训练语言模型(PLM)如何推动通用文本嵌入(GPTE)的发展。文章详细分析了PLM在GPTE中的基础角色(嵌入抽取、长文本处理等)和高级扩展(多模态、多语言、代码嵌入),指出模型规模越大性能越好,并强调了数据合成、对比学习和大模型上下文窗口是提升性能的关键。未来嵌入模型将向"会推理、懂安全、能解耦"方向发展。---

2026-01-08 11:11:25 550

原创 【必收藏】LLM微调技术全解析:从零开始掌握大模型定制化技能

文章全面解析了大型语言模型(LLM)微调技术,涵盖预训练、微调、RLHF三阶段训练流程及术语关系。重点对比了全参数微调与参数高效微调(PEFT)技术的差异,详细介绍了LoRA等主流PEFT方法的核心原理、工具框架及工程实践指南。文章还提供了效果评估方法、技术陷阱解决方案及多模态微调等未来趋势展望,为开发者提供了从理论到实践的完整技术路径,助力实现大模型的高效定制与应用。

2026-01-08 11:07:28 671

原创 收藏!用deepseek搭建你的AI论文自动化解读系统,小白也能轻松掌握

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-08 11:04:32 753

原创 手把手部署私有RAG知识库!基于Qwen2/Llama3 + Docker + AnythingLLM,企业级方案附避坑指南,建议收藏!

和我们之前的大模型部署和应用过程相比,基于 AnythingLLM 的 RAG 实现整个部署过程比较繁琐,包括环境准备、Docker 安装和配置、AnythingLLM 配置等。然而,AnythingLLM 的使用过程却相对比较简单,我们只需要上传我们内部数据文件,AnythingLLM 框架屏蔽了中间的数据提取分割、向量化处理、向量索引和入库、检索召回和重组 Prompt 提示词等过程。

2026-01-08 11:02:18 943

原创 收藏必备!AI大模型面试通关秘籍:五大核心领域精选问题与深度解析

本文系统梳理了AI大模型面试的五大核心领域:模型架构与核心概念、训练与优化、微调与效率技术、生成能力与推理、部署挑战与应用,并提供了精选问题与解答。文章还分享了从零到精通的大模型学习路径,包括理论、RAG开发、Agent设计、模型微调与部署等内容,帮助技术从业者系统掌握AI大模型技术,为面试和实际应用做好准备。

2026-01-08 10:54:57 710

原创 【必学收藏】LangChain & LangGraph从零实战:构建大模型智能体全流程指南

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-08 10:50:00 963

原创 收藏必看!Context Engineering与RAG实战:从零开始打造工业故障智能诊断系统

Context Engineering 代表了一种从"提示设计"到"信息生态设计"的演进,使大型语言模型能够在专业领域中发挥更大作用。在工业故障维修与诊断场景中,通过 RAG 等上下文工程技术,我们将海量的设备知识融入智能问答,让AI能够像经验丰富的工程师一样提供有依据的诊断和建议。这不仅提高了故障处理效率,也降低了对个人经验的依赖,使知识在团队和组织中得到更好的传承和复用。当然,上下文工程并非万能良药,它需要与高质量的数据、领域知识和人机协作机制相结合,才能发挥最佳效果。

2026-01-07 09:24:06 794

原创 收藏!大模型Function Call实战教程:从零开始,让你的AI会“做事“

Function Call是大模型调用外部工具的能力,解决了实时数据获取、专有数据访问和实际操作执行问题。工作流程为:应用传递问题和函数定义→模型决策并生成参数→应用执行函数→模型生成最终回答。它使大模型从静态记忆进化为"按需取数+安全执行+可控反馈"的执行中枢,与MCP和Agent共同构成完整AI应用生态,是AI落地不可或缺的技术。

2026-01-07 09:21:22 555

原创 【必学收藏】LangChain Memory完全指南:让大模型拥有对话记忆能力,实现智能交互

本文详细介绍了LangChain中的Memory机制,即对话历史管理功能,用于让大模型记住之前的交互内容。文章通过代码示例展示了如何使用ChatMessageHistory管理对话历史、实现多用户多轮对话、使用RunnableWithMessageHistory自动添加历史记录,以及ConversationBufferMemory、ConversationBufferWindowMemory和ConversationEntityMemory等不同类型的记忆机制。这些技术使大模型能够维护会话状态、提供个性化体

2026-01-07 09:20:09 734

原创 【必藏】Java后端工程师AI工程化实战指南:从LLM集成到向量数据库应用

本文为Java后端开发者提供了AI工程化实战指南,详细介绍如何通过集成大语言模型和向量数据库构建智能应用。文章涵盖API调用、向量数据库集成、RAG系统实现等技术要点,并提供大量Java代码示例。同时讨论了性能优化、安全配置等企业级考量,帮助Java开发者掌握AI集成技能,提升职业竞争力。

2026-01-07 09:19:16 1007

原创 【干货收藏】小白也能懂的大模型原理:从GPT到Transformer架构的完整解析

文章通过从简单到复杂的递进方式,解释了大模型(特别是GPT)的工作原理。首先用汪星人例子说明基于概率的预测模型,然后深入讲解Transformer架构,包括输入处理、Embedding向量和Self-Attention算法等核心组件。文章通过流程图和矩阵计算,帮助读者理解大模型如何通过多层矩阵运算预测下一个词,并详细介绍了Token词表、Embedding向量和自注意力机制等关键概念。

2026-01-07 09:17:53 301

原创 【收藏必备】程序员必学:Neo4j知识图谱与LangChain打造高效RAG系统

本文详细介绍了如何结合Neo4j知识图谱和LangChain构建RAG系统,解决传统向量检索在多跳推理和关系查询上的不足。通过LangChain的Neo4jGraph和CypherQAChain,开发者可以轻松实现混合检索策略,结合语义相似性和关系推理,打造出精准、可解释且适合生产环境的RAG系统,适用于医疗、金融等多个领域。

2026-01-07 09:17:13 802

原创 收藏!一文读懂大模型知识处理三大技术:RAG到DeepResearch的完整演进指南

本文系统介绍大模型知识处理技术的三大演进:RAG通过外部知识库解决LLM知识时效与专业性问题;DeepSearch实现动态检索提升复杂查询精度;DeepResearch构建自主研究系统实现从信息检索到知识创造的跨越。文章对比了三者在技术定位、检索方式和应用场景上的差异,指出未来将呈现检索-生成深度耦合、研究能力模块化和多模态知识处理的融合趋势,为不同复杂度问题提供针对性解决方案。

2026-01-07 09:15:22 860

原创 【收藏必备】Agent与Workflow不可不知的差异,Dify多Agent架构实战详解

本文详细介绍了Agent与Workflow的概念区别,Agent是具备自主决策能力的智能实体,而Workflow是预定义任务序列的流程化管理。文章重点讲解了在Dify平台中如何通过Agent节点实现多Agent架构,对比了Function Calling和ReAct两种推理策略,并提供了根据不同业务目标选择Agent或Workflow的实用建议,帮助开发者更好地构建复杂AI应用。

2026-01-06 11:25:14 992

原创 从零到精通:揭秘大模型底层原理与数学魔法(程序员必学收藏)

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-06 11:22:18 704

原创 【建议收藏】大模型学习全攻略:从零基础到项目实战,助你抓住AI技术风口

文章提供了大模型系统学习四阶段路径:基础期(数学+编程)、核心期(Transformer深度解析)、实战期(RAG与模型优化)、前沿期(多模态等方向)。强调从小模型入手,结合PyTorch实践,掌握微调、部署等核心技能,并提供完整学习资源。适合零基础小白和转型开发者,通过"边学边练"快速入门大模型领域。

2026-01-06 11:17:59 882

原创 大模型学习完全指南:从Transformer到Agent,收藏这份资源就够了

文章全面介绍大模型核心技术,包括Transformer与MoE架构对比、5种微调技术、RAG与智能体RAG区别、智能体设计模式、文本分块策略及智能体系统等级。同时提供从入门到实战的学习路径,涵盖理论基础、RAG开发、Agent设计、模型微调及部署等实战内容,适合不同背景学习者掌握AI大模型技术。---

2026-01-06 11:16:03 820

原创 AI智能体架构设计完全指南:从LLM Agent到Muti Agent,收藏这篇就够了!

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-06 11:12:32 420

原创 【收藏必备】2026年AI Agent元年揭秘:大模型智能体的核心技术与实战应用

文章详细介绍了AI Agent作为2025年AI元年的突破性技术,阐述了其五大特征(自主性、适应性、交互性、目标性、多模态)和四大核心组成(大语言模型、记忆、规划、工具),并解释了从感知环境到执行任务的完整工作流程。AI Agent实现了从"被动响应"到"主动服务"的跃迁,是普通人抓住AI风口的重要学习方向。

2026-01-06 11:08:36 605

原创 必看收藏!让大模型更聪明?一文详解高质量微调数据集打造全流程

简单来说,LLM的数据集就是一堆用来训练模型的数据集合。这些数据可以是网页文本、书籍内容、对话记录,甚至是专门为某个任务设计的指令。数据集的作用是让模型学会理解和生成符合你期望的输出。但光有数据还不够,数据得经过“加工”才能被模型“消化”。这就涉及分词(tokenization),也就是把文本拆成一个个小单元(比如单词、子词或字符),然后转成模型能理解的数字表示(嵌入)。一个好的数据集不仅要内容丰富,还要格式规范,这样模型才能高效学习。•原始语料:比如从维基百科抓取的纯文本,适合继续预训练(CPT)。

2026-01-06 11:05:15 799

原创 深入解析AI Agent五件套:从感知到学习的完整指南【必收藏】

文章将AI Agent比作"五件套"机器,解析五大核心模块:感知(信息收集)、大脑/决策(LLM分析与规划)、规划与执行(工具调用)、记忆(短期与长期存储)以及学习与适应(持续进化)。通过自动咖啡机和订餐实例,展示各模块如何协同工作,使Agent从通用工具转变为个性化助手。强调工具使用能力是Agent区别于传统聊天机器人的关键,而记忆与学习机制则使其能持续进化。

2026-01-05 20:14:32 872

原创 【必学收藏】Dify 2.0知识管道全攻略:从入门到精通RAG应用开发

文章详细介绍了Dify 2.0版本中的知识管道功能,这是RAG系统的重要组成部分。讲解了升级方法、七种内置流水线模板的使用,并通过实际案例展示了知识管道在文档解析、分块和检索方面的优势。同时介绍了数据源插件、文档处理器和分块器等组件的配置与使用,为开发者提供了完整的RAG应用开发指南。

2026-01-05 20:11:32 602

原创 收藏必备!LLM智能体开发三大误区:避开这些“思维病毒“,让你的AI应用更稳定可靠

文章揭示了LLM智能体开发中的三大误区:多智能体协作的幻象、RAG理论实践落差、指令堆砌的迷信。作者认为这些"思维病毒"导致系统复杂且不稳定。真正的解决方案是回归上下文工程,采用单线程设计、精简指令和传统检索方法。2025年务实的路径是放弃科幻幻想,专注于构建稳定可靠的单线程智能体,一个能稳定工作的简单智能体远比一群混乱的智能体更有价值。

2026-01-05 20:09:22 1029

原创 收藏!小白友好:RAG系统中的三大模型揭秘,大模型入门必读

文章详细介绍了RAG系统中的三大模型:Embedding模型负责将文本映射为向量实现快速检索;Rerank模型对初步检索结果进行精细排序;生成式大模型最终整合信息生成回答。文章强调Embedding和Rerank模型虽非"大模型",但在系统中分别负责"广度"检索和"精度"排序,是构建高效RAG系统的关键组件。最后提供大模型学习资料,帮助读者系统掌握AI时代的核心技术。

2026-01-05 20:06:23 473

原创 自己动手实现RAG:让AI拥有专属知识库,这篇教程值得收藏!

本文详细介绍了如何从零开始实现RAG系统,涵盖文档解析、文本分块、向量数据库搭建、语义检索等完整流程。相比使用框架,自己实现能清晰掌握每个环节的工作原理,便于问题定位和针对性优化。文章还讨论了对话记忆、指代消解等高级功能,帮助开发者构建更精准高效的检索增强生成系统。

2026-01-05 20:04:17 1284

原创 大模型应用架构实战指南:六大核心层解析与最佳实践,程序员必读收藏

大模型应用架构是连接基础模型与实际业务的关键桥梁,包含数据层、预处理层、知识与模型中台层、模型层与训练优化层、应用层及技术支撑层六大层次。该架构通过系统化设计,将大模型潜力转化为可落地的解决方案,具有高可扩展性和适应性。随着技术发展,架构正向多模态融合、云边协同、安全合规和MaaS生态等方向演进,已在金融、互联网、制造业等领域实现规模化应用,推动各行业智能化转型。

2026-01-05 20:01:36 893

原创 收藏必学:大模型智能体设计:5大模式+5层次+3配方,从入门到精通

文章介绍了大模型智能体的设计模式(反思、工具使用、ReAct、规划、多智能体)和应用层次(基础响应到自主),强调了记忆与护栏的重要性。提供了从零到一的入门路径:先掌握基础层次,叠加设计模式,并加入护栏与记忆。最后分享了三套入门配方和常见问题规避方法,帮助开发者系统学习大模型技术,从零到一打造高效AI智能体。

2026-01-05 19:58:23 718

原创 企业大模型落地完整指南:从私有化部署到微调蒸馏,小白也能懂!

文章系统介绍了企业大模型落地的完整技术链路:私有化部署保障数据安全,提示词工程和RAG实现零成本业务适配,Agent开发构建端到端闭环,微调和蒸馏作为最终优化手段。强调私有化是企业真正用上大模型的入场券,并指出AI时代需要培养新型人才角色,通过转岗、校招和合作等方式建设人才梯队,实现人机协同。

2026-01-04 11:01:01 681

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除