世界级AI大佬吴恩达:LLM CookBook 汉化版

粉丝们久等了!!!我又来更LLM大模型的必备读物啦!
这次给大家推荐的是AI圈无人不知的吴恩达大佬+OpenAI团队一起编写的大模型入门文档

也就是这本:大型语言模型(LLM)的权威文档<面向开发者的LLM入门PDF>

粉丝们久等了!!!我又来更LLM大模型的必备读物啦!
这次给大家推荐的是AI圈无人不知的吴恩达大佬+OpenAI团队一起编写的大模型入门文档
也就是这本:大型语言模型(LLM)的权威文档<面向开发者的LLM入门PDF>

在这里插入图片描述

在Github上已经高达56.8k star了,这含金量啧啧啧

大家来看看目录有你想学的大模型技能吗?
文档目录在这:
前言
环境配置
第一部分 面向开发者的提示工程
第一章 简介
第二章 提示原则
第三章 迭代优化
第四章 文本概括
第五章 推断
第六章 文本转换
第七章 文本扩展
第八章 聊天机器人
第九章 总结
第二部分 搭建基于 ChatGPT 的问答系统
第一章 简介
第二章 语言模型,提问范式与 Token
第三章 评估输入——分类
第四章 检查输入 - 审核
第五章 处理输入-思维链推理
第六章 处理输入-链式
第七章 检查结果
第八章 搭建一个带评估的端到端问答系统
第九章 评估(上)——存在一个简单的正确答案
第十章 评估(下)——不存在简单的正确答案
第十一章 总结
第三部分 使用 LangChain 开发应用程序
第一章 简介
第二章 模型,提示和输出解释器
第三章 储存
第四章 模型链
第五章 基于文档的问答
第六章 评估
第七章 代理
第八章 总结
第四部分 使用 LangChain 访问个人数据
第一章 简介
第二章 文档加载
第三章 文档分割
第四章 向量数据库与词向量(Vectorstores and Embeddings)
第五章 检索(Retrieval)
第六章 问答
第七章、聊天 Chat
第八章、总结
吴恩达和OpenAI的这门教程对于希望深入了解和掌握大型语言模型的开发者来说是一个宝贵的资源

它不仅提供了深入的理论知识,而且还通过实践指导,帮助开发者将LLM技术应用于实际问题中
在Github上已经高达56.8k star了,这含金量啧啧啧

大家来看看目录有你想学的大模型技能吗?
文档目录在这:
前言
环境配置
第一部分 面向开发者的提示工程
第一章 简介
第二章 提示原则
第三章 迭代优化
第四章 文本概括
第五章 推断
第六章 文本转换
第七章 文本扩展
第八章 聊天机器人
第九章 总结
第二部分 搭建基于 ChatGPT 的问答系统
第一章 简介
第二章 语言模型,提问范式与 Token
第三章 评估输入——分类
第四章 检查输入 - 审核
第五章 处理输入-思维链推理
第六章 处理输入-链式
第七章 检查结果
第八章 搭建一个带评估的端到端问答系统
第九章 评估(上)——存在一个简单的正确答案
第十章 评估(下)——不存在简单的正确答案
第十一章 总结
第三部分 使用 LangChain 开发应用程序
第一章 简介
第二章 模型,提示和输出解释器
第三章 储存
第四章 模型链
第五章 基于文档的问答
第六章 评估
第七章 代理
第八章 总结
第四部分 使用 LangChain 访问个人数据
第一章 简介
第二章 文档加载
第三章 文档分割
第四章 向量数据库与词向量(Vectorstores and Embeddings)
第五章 检索(Retrieval)
第六章 问答
第七章、聊天 Chat
第八章、总结
吴恩达和OpenAI的这门教程对于希望深入了解和掌握大型语言模型的开发者来说是一个宝贵的资源

它不仅提供了深入的理论知识,而且还通过实践指导,帮助开发者将LLM技术应用于实际问题中

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值