大模型经典面试题————如何解决大模型推理过程中的延迟问题?
本人是某双一流大学硕士生,也最近刚好准备参加 2024年秋招,在找大模型算法岗实习中,遇到了很多有意思的面试,所以将这些面试题记录下来,并分享给那些和我一样在为一份满意的offer努力着的小伙伴们!!!
面试题
- 如何解决大模型推理过程中的延迟问题?
标准答案
解决大模型推理过程中的延迟问题是一个复杂而重要的任务,它涉及到多个层面的优化。
以下是一些主要的解决策略:
一、硬件资源优化 选用高性能硬件
选用高性能的硬件资源,如GPU、TPU等加速器,可以显著提高推理速度。
这些加速器专为大规模并行计算设计,能够加速深度学习模型的计算过程。
-
多卡并行推理: 采用多卡并行推理,将模型切分为多个子任务,分布在多个GPU或CPU上进行并行处理。
-
负载均衡:通过负载均衡,可以进一步提高推理速度。
-
硬件资源合理配置: 根据模型的需求合理配置硬件资源,如内存大小、显存带宽等,以确保硬件资源得到充分利用,避免成为推理过程中的瓶颈。
二、算法与模型优化 算法优化
通过改进算法或采用混合精度推理等方法,减少大模型的计算量和通信开销。
例如,混合精度推理可以将模型中的浮点数运算转换为低精度运算,从而减少GPU的内存占用和显存带宽需求。
- 模型压缩与剪枝: 通过对大模型进行压缩和剪枝,去除冗余参数和不必要的计算,可以减小模型的大小和计算复杂度,从而提高推理速度。
同时,压缩和剪枝还可以减少模型的过拟合现象,提高模型的泛化能力。
- 使用流式请求: 在某些应用场景下,可以采用流式请求的方式,即服务端生成一段推理内容后即输出,调用方无需等待所有数据返回后再处理。
这种方式可以显著提升首个token的响应时间,减少用户等待时间。
- 模型切换: 根据不同模型的推理速度和效果,合理选择不同效果的模型进行推理。
在实时性要求较高的场景下,可以选择推理速度较快的模型;在准确性要求较高的场景下,可以选择推理效果更好的模型。
三、数据加载与处理优化 数据缓存与预加载
在推理过程中,采用缓存和预加载技术,将常用的模型参数和中间结果缓存在本地磁盘或内存中,避免重复计算和数据传输,从而提高推理速度。
- 数据并行处理: 对于大规模数据集,可以采用数据并行处理技术,将数据集切分为多个小批次,分配到不同的计算节点上进行并行处理。
通过并行计算,可以显著减少数据加载和处理时间。
四、其他优化策略 优化器选择与参数更新
在训练过程中,选择合适的优化器和参数更新策略,如SGD、Adam等,以加速模型的收敛速度和推理速度。
- 分布式推理: 对于超大规模的大模型,可以采用分布式推理技术,将模型部署在多个节点上进行并行推理。
通过将输入数据切分为多个小批次,分配到不同的节点上进行并行处理,然后汇总结果,可以实现大规模数据的快速推理。
- 结合实际应用场景进行优化: 不同的应用场景对LLM的推理性能有不同的需求。
因此,需要根据实际应用场景来选择合适的优化策略。
例如,对于需要实时响应的场景,可以优先考虑降低时延;而对于需要处理大量数据的场景,可以优先考虑提高吞吐量和优化显存使用。
总结
综上所述,解决大模型推理过程中的延迟问题需要从硬件资源优化、算法与模型优化、数据加载与处理优化以及其他优化策略等多个方面入手,综合采用多种策略来提高推理速度和性能。
小结
- FFN不仅增加了模型的表达能力,而且对于防止模型秩过快坍缩至关重要,并且它还承担着信息存储的角色。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。