在2024年11月19日的微软Ignite大会上,微软宣布了多项AI技术的重大更新,尤其是Microsoft 365的新智能体引发了广泛关注。其中,Teams会议的同声翻译智能体尤为惊艳,它让不同语言的与会者实现了实时交流,为全球用户提供了前所未有的语言无障碍体验。本文将详细介绍微软365新智能体的意义、功能,以及同声翻译智能体如何改变跨语言沟通的游戏规则。
一、 AI引领工作方式的变革
随着AI技术的不断发展,人与AI的协作正在重塑现代工作方式。Microsoft 365 Copilot的推出,标志着个人AI助手在办公环境中的普及,而本次新增的智能体则为Copilot注入了更多专业技能和自动化能力。
这些智能体基于用户的业务需求和企业数据,能够处理从简单任务到复杂业务流程的多样化任务。这意味着企业不仅可以通过它们提升员工效率,还能实现更快的创新。微软365的新智能体,让每一位用户都能充分释放潜力,真正开启了智能化办公的新篇章。
二、五大全新智能体的亮点
微软推出了五款新智能体,各自承担特定的业务功能,旨在进一步扩展Microsoft 365的应用场景:
-
SharePoint智能体
借助SharePoint数据,员工可以即时获取洞察,或创建定制化的智能体,与同事分享。无需费力搜索,信息触手可及,大幅提升知识管理效率。 -
Facilitator智能体
专注于优化协作,尤其是在Teams中。它能够实时记录会议笔记、提供共同编辑功能,并在群聊中总结关键决策和未决问题,让协作更高效。 -
Interpreter智能体
同声翻译智能体是本次发布的明星功能。它通过实时语音翻译打破语言障碍,支持多语言无缝交流,并将陆续加入语音模拟功能,让翻译声音更具人性化。 -
Project Manager智能体
自动化Planner中的项目管理任务,包括任务分配、进度跟踪和状态报告。结合Microsoft Whiteboard,它还支持可视化协作,适用于各种复杂项目场景。 -
Employee Self-Service智能体
专为HR和IT服务设计,员工可通过它快速找到相关答案或提交请求,例如请假、工单管理等,省去大量时间。
三、Teams同声翻译智能体的革命性意义
**同声翻译智能体(Interpreter Agent)**是本次发布的最大亮点之一。它针对跨语言会议的需求,提供了真正的“实时语音到语音”翻译功能,从根本上消除了全球合作中的语言障碍。
核心功能
-
支持九种语言的实时语音翻译,包括中文(普通话)、英语、韩语、西班牙语等。
-
未来将加入语音模拟功能,使翻译后的语音更贴近发言者的声音和语气,提供更具沉浸感的会议体验。
-
需要Microsoft 365 Copilot许可证,预计2025年初进入公测阶段。
使用场景展示
微软在Ignite大会上展示了视频1,在专栏介绍的文章中展示了视频2,可以直观感受同声翻译智能体的强大。读者可以关注我的公众号“非架构”观看这两段视频。
-
视频1:一位讲英语的与会者发言后,内容实时翻译成韩语,为韩语用户提供流畅理解的体验。
-
视频2:一位讲西班牙语的与会者发言后,内容被实时翻译成英语,展示了无缝的跨语言交流。
这种实时翻译技术,让国际会议无需额外聘请翻译服务,大幅降低沟通成本,同时提升效率与参与感。
四、总结与展望
微软365的新智能体,通过自动化和专业化功能,为企业和用户解决了效率低下、成本上升等痛点,同时释放了更多时间和资源,用于高价值的创造性工作。同声翻译智能体的加入,更是消除了全球合作中的最大障碍之一,让跨国沟通变得更加自然与高效。
未来,微软将继续扩展智能体的功能,推动企业在数字化转型中实现更高效的协作、更明智的决策和更快的创新。AI的潜力才刚刚开始释放,我们期待微软365在未来的进一步突破。
希望这篇文章可以让您全面了解微软365智能体的魅力,尤其是同声翻译功能对现代办公的革命性影响!如果您对这些智能体有任何看法,欢迎在评论区交流。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。