揭秘高频交易“军备竞赛”

本文旨在量化高频交易中的现象——延迟套利,并系统分析其对金融市场的影响。

1. 研究背景与动机

1.1 金融市场电子化转型

自20世纪90年代以来,金融市场经历了从人工交易到电子化的转型。这一转型显著降低了交易成本,提高了市场流动性,但同时也引发了关于交易速度重要性的争议。

  • 金融市场电子化带来了交易成本下降和市场流动性提升等可衡量的改善。

  • 然而,关于交易速度在现代电子市场中重要性的争议也随之而来。

1.2 延迟套利的概念与争议

延迟套利,也称为“狙击”或“捡漏”,是指利用速度优势抢先执行交易以获取套利机会的现象。

  • 支持者认为,延迟套利是高频交易公司利用技术优势获取不公平利润的手段,市场被“操纵”以利于内部人士。

  • Michael Lewis 在其著作《Flash Boys》中指出,市场被“操纵”,以利于内部人士。

  • 延迟套利被视为高频交易公司利用速度优势获取不公平利润的手段。

  • 反对者则认为,延迟套利的影响被夸大了,其收益微不足道,不构成市场操纵。

  • 现代市场倡议组织(Modern Markets Initiative)首席执行官 Bill Harts 表示,延迟套利是一个“神话”。

  • 他们认为延迟套利的影响被夸大,其收益不足以构成市场操纵。

1.3 研究现状与不足

现有研究主要存在以下不足:

  • 研究对象局限于特定交易类型,难以全面评估延迟套利的影响。

  • 例如,Budish, Cramton 和 Shim (2015) 估计了 S&P 500 期货-ETF 套利的收益。

  • Aquilina 等人 (2016) 关注英国暗池中的陈旧参考价格。

  • 这些研究无法从特定延迟套利交易的收益推断出整体规模。

  • 数据来源主要依赖传统的限价订单簿数据,无法捕捉到延迟套利中的失败尝试,无法直接观察到“竞争”。

  • 传统的限价订单簿数据只记录成功消息,无法捕捉到延迟套利中的失败尝试。

  • 例如,Ding, Hanna 和 Hendershott (2014) 研究了不同数据源之间价格差异的频率和规模,但无法确定哪些差异是实际可套利的。

  • Wah (2016) 和 Dewhurst 等人 (2019) 也面临类似挑战。

  • 部分研究尝试通过不同数据源的价格差异来推断延迟套利,但无法确定哪些差异是实际可套利的。

2. 研究方法

本文提出了一种新的研究方法,利用交易所的消息数据来量化延迟套利。

2.1 消息数据与传统限价订单簿数据的区别

消息数据包含所有参与者发送给交易所以及交易所发送给参与者的消息,包括以下两类:

  • 成功消息: 导致订单执行或订单簿状态变化的消息。

  • 例如,新订单执行、部分执行、取消确认等。

  • 失败消息: 未能执行或未能影响订单簿状态的消息,例如失败的市场订单(Immediate-Or-Can-cel, IOC)和取消请求。

  • 例如,收到“取消太晚”错误消息或市场订单未能执行。

相比之下,传统限价订单簿数据只记录成功消息,无法捕捉到延迟套利中的失败尝试。

2.2 数据来源与处理
  • 数据来源: 伦敦证券交易所(LSE)提供的消息数据,涵盖2015年8月17日至10月16日期间FTSE 350指数所有股票的9周交易数据。

  • 数据经过筛选,剔除了一个交易日(9月7日)存在少量数据损坏的情况。

  • 最终数据包含约22亿条消息,每个股票-日期平均约15万条消息。

  • 时间戳精度: 消息时间戳精确到微秒(百万分之一秒),且时间戳位置位于交易所网络“外墙”,代表参与者消息到达交易所的确切时间。

  • 硬件时钟对所有消息进行时间戳记录,精度为100纳秒。

  • 时间戳位置理想地反映了延迟套利的“终点线”,因为它表示参与者消息到达交易所“外墙”的时间。

  • 数据处理:

  • 限价订单簿状态在出站消息上进行维护,因为出站消息报告了匹配引擎实际执行的操作。

  • 通过对消息数据进行循环遍历,并结合参与者提供的和交易所提供的标识符,将消息数据分类为市场事件。

  • 例如,“新订单 - 完全执行”事件对应于一个入站新订单消息和一个出站完全执行消息。

  • 将消息数据分类为市场事件,例如“新订单 - 完全执行”、“挂单 - 被动执行”等。

  • 维护每个股票-日期的限价订单簿状态,以便后续分析。

2.3 延迟套利事件的识别

基于延迟套利理论,本文定义了延迟套利事件的四个特征:

  1. 多个参与者: 至少两个不同的参与者针对同一股票、相同价格和方向进行交易。
  • 参与者数量: 至少2个不同的用户ID。

  • 在敏感性分析中,还考虑了参与者数量至少为3个,以及参与者公司ID必须唯一的要求。

  1. 交易类型: 参与者尝试执行或取消订单,或者仅尝试执行订单。
  • 交易类型: 参与者可以发送执行订单或取消订单的消息。

  • 在敏感性分析中,还考虑了要求至少有一个取消尝试,以及要求至少有两个执行订单的要求。

  1. 竞争结果: 至少有一个参与者成功执行订单,至少有一个参与者失败(例如,收到“取消太晚”错误消息或未能执行市场订单)。
  • 市场订单或限价订单成功: 获得正数量。

  • 取消尝试成功: 收到取消确认消息。

  • 取消尝试失败: 收到“取消太晚”错误消息。

  • 市场订单失败: 收到“过期”消息,表明市场订单未能执行。

  • 失败:

  • 成功:

  1. 时间同步性: 参与者消息到达交易所的时间间隔小于信息视野(Information Horizon)。
  • M1 表示延迟套利事件中的第一条消息。

  • M2 表示延迟套利事件中的第二条消息。

  • 实际观察到的延迟: 从M1 入站消息时间戳到其出站消息时间戳的时间间隔。

  • 最小观察到的反应时间: 最先进的算法交易公司对交易所更新做出反应所需的最短时间。

  • 信息视野 = 实际观察到的延迟(M1 入站 -> M1 出站)+ 最小观察到的反应时间(M1 出站 -> M2 入站)

  • 本文计算最小观察到的反应时间为29微秒,并决定将信息视野的上限设置为500微秒。

2.4 其他敏感性分析

为了验证结果的稳健性,本文进行了以下敏感性分析:

  • 调整参与者数量要求(例如,至少3个或5个参与者)。

  • 参与者数量越多,检测到的延迟套利事件数量越少,但每个事件的收益越高。

  • 调整参与者类型要求(例如,要求至少有一个取消尝试)。

  • 要求取消尝试会显著减少延迟套利事件数量和相应的流动性损失。

  • 参与者数量越多,延迟套利事件数量越少,但每个事件的收益越高。

  • 调整参与者消息到达时间间隔要求(例如,将时间间隔T 从50微秒扩大到3毫秒)。

  • 时间窗口越长,检测到的延迟套利事件数量越多,但对每个事件的收益影响不大。

  • 这表明延迟套利事件主要由少数参与者主导。

  • 调整成功和失败标准(例如,仅将失败的市场订单和取消尝试视为失败)。

  • 在较长时间窗口下,是否将普通限价订单视为失败对延迟套利事件数量影响较大。

  • 因此,在时间窗口超过信息视野时,只将失败的市场订单和取消尝试视为失败。

3. 主要研究结果

3.1 延迟套利事件的频率与持续时间
  • 频率:

  • 平均每个FTSE 100股票每天发生537次延迟套利事件,相当于每分钟一次。

  • 平均每个FTSE 250股票每天发生70次延迟套利事件,相当于每7分钟一次。

  • 延迟套利事件在FTSE 100股票中普遍存在,但在FTSE 250股票中分布不均,部分股票几乎没有延迟套利活动。

  • 持续时间:

  • 平均延迟套利事件的持续时间为79微秒。

  • 延迟套利事件的持续时间呈双峰分布,模式在5-10微秒之间,中位数为46微秒。

  • 有时“错误”的消息会赢得比赛,约4%的情况下,第一条失败消息在第一条成功消息之前到达,这可能是由于交易所网关处理中的随机性造成的。

3.2 延迟套利事件中的交易量
  • 在延迟套利事件中进行的交易占每日交易量的比例:

  • FTSE 100股票: 22% 的交易量,21% 的交易笔数。

  • FTSE 250股票: 17% 的交易量,20% 的交易笔数。

  • 延迟套利事件持续时间仅占交易日的0.0001%,但在如此短的时间内产生了大量交易。

3.3 延迟套利事件的参与者
  • 参与者数量:

  • 平均每个延迟套利事件有3.3个参与者。

  • 参与者数量随着时间间隔的增加而增加。

  • 参与者类型:

  • 延迟套利事件主要由前6名参与者主导,他们赢得了82%的比赛,并获得了87%的失败。

  • 前6名参与者在延迟套利事件中获取了80%的流动性,而提供了42%的被获取流动性。

  • 前6名参与者中,有4家主要从事“套利”,即从其他参与者那里获取流动性,而另外2家则兼顾“套利”和流动性提供。

3.4 延迟套利事件的收益
  • 平均每个FTSE 100股票延迟套利事件的收益为0.48个跳动点(约2英镑)。

  • 平均每个FTSE 250股票延迟套利事件的收益为0.77个跳动点(约1.55英镑)。

  • 延迟套利事件的收益存在较大差异,90%的延迟套利事件收益为3个跳动点,99%的收益为10个跳动点。

  • 延迟套利事件的收益与市场交易量和波动性高度相关。

3.5 延迟套利对市场流动性的影响
  • 延迟套利事件造成的交易成本占有效价差的32.82%,占所有价格影响的30.58%。

  • 这表明延迟套利是市场流动性成本的重要组成部分,应与传统的逆向选择并列。

  • 延迟套利税为0.42个基点(基于总交易量)或0.53个基点(基于非延迟套利交易量)。

  • 延迟套利税衡量的是延迟套利对市场流动性造成的“税收”负担。

  • 基于总交易量的延迟套利税意味着,每交易10亿英镑,延迟套利就会增加41,900英镑的交易成本。

  • 基于非延迟套利交易量的延迟套利税意味着,每交易10亿英镑,延迟套利就会增加53,400英镑的交易成本。

  • 这表明延迟套利对非延迟套利交易施加了0.53个基点的税。

  • 延迟套利税的构成:

    价格影响:

    有效价差:

  • 延迟套利事件中的价格影响占有效价差的37%。

  • 这表明延迟套利对市场流动性成本的贡献与传统的逆向选择相当。

  • 延迟套利事件中的价格影响占所有价格影响的33%。

  • 这意味着延迟套利事件导致的价格波动占市场整体价格波动的三分之一。

  • 延迟套利对市场流动性的影响:

  • 这意味着延迟套利对市场流动性成本的影响是显著的,消除延迟套利可以显著降低投资者的交易成本。

  • 如果消除延迟套利,市场流动性成本将降低17%。

4. 敏感性分析与稳健性检验

为了验证结果的稳健性,本文进行了多种敏感性分析和稳健性检验。

4.1 延迟套利事件定义的变化

4.1.1 时间窗口的影响

  • 本文将延迟套利事件的时间窗口从50微秒扩大到3毫秒。

  • 例如,在100微秒的时间窗口内,延迟套利税为0.26个基点,价格影响占有效价差的19.2%;而在3毫秒的时间窗口内,延迟套利税为0.74个基点,价格影响占有效价差的66.1%。

  • 例如,在100微秒的时间窗口内,FTSE 100股票平均每天发生389次延迟套利事件;而在3毫秒的时间窗口内,平均每天发生800次延迟套利事件。

  • 时间窗口越长,检测到的延迟套利事件数量越多。

  • 时间窗口越长,延迟套利事件对市场流动性的影响越大。

  • 这表明延迟套利事件的影响随着时间窗口的扩大而增加。

4.1.2 参与者数量要求的影响

  • 本文将参与者数量要求从至少2个参与者增加到至少5个参与者。

  • 例如,在信息视野内,要求至少3个参与者会将延迟套利税从0.42个基点降低到0.29个基点。

  • 例如,在信息视野内,要求至少3个参与者会将每个延迟套利事件的收益增加约60%。

  • 例如,在信息视野内,要求至少3个参与者会将延迟套利事件数量减少约60%。

  • 参与者数量越多,检测到的延迟套利事件数量越少。

  • 参与者数量越多,每个延迟套利事件的收益越高。

  • 参与者数量对延迟套利对市场流动性的总体影响有限。

4.1.3 取消尝试的影响

  • 本文要求延迟套利事件中至少包含一个取消尝试。

  • 例如,在信息视野内,要求至少一个取消尝试会将延迟套利事件数量和延迟套利税都降低到基准水平的约30%。

  • 要求取消尝试会显著减少延迟套利事件数量和相应的流动性损失。

  • 这与延迟套利事件主要由“套利”主导的观点一致。

  • 然而,在更长的时间窗口(例如3毫秒)下,要求取消尝试对延迟套利事件数量和延迟套利税的影响较小。

4.1.4 成功和失败标准的影响

  • 本文对成功和失败的标准进行了调整,例如,仅将失败的市场订单和取消尝试视为失败。

  • 因此,在时间窗口超过信息视野时,只将失败的市场订单和取消尝试视为失败。

  • 在较短的时间窗口(例如,信息视野)下,不同的成功和失败标准对延迟套利事件数量和延迟套利税的影响较小。

  • 在较长的时间窗口(例如,500微秒及以上)下,是否将普通限价订单视为失败对延迟套利事件数量影响较大。

4.2 其他稳健性检验

4.2.1 延迟套利事件与负收益

  • 本文发现,延迟套利事件中存在一定比例的负收益事件。

  • 例如,在基准情况下,20%的延迟套利事件在比赛结束后100毫秒内收益为负。

  • 这表明一些延迟套利事件是基于事后看来不盈利的噪音信号。

  • 然而,即使在更严格的要求下(例如,要求至少5个参与者,在50微秒内),仍有部分延迟套利事件收益为负。

4.2.2 延迟套利事件与订单簿活动

  • 本文发现,部分延迟套利事件是由订单簿活动触发的。

  • 例如,在约14%的延迟套利事件中,延迟套利事件开始前100微秒内,延迟套利方向的最佳买入价或卖出价发生变化。

  • 这些延迟套利事件与基准延迟套利事件相比,取消尝试较少,非前6名参与者提供的流动性比例更大。

  • 这与Li, Wang 和 Ye (2020) 的理论一致,即延迟套利事件可以由订单簿活动触发。

  • 然而,大多数延迟套利事件的开始前价格是稳定的,这表明大多数延迟套利事件仍然是由外部信号触发的。

5. 延迟套利对全球股票市场的影响

5.1 延迟套利收益预测模型

为了预测延迟套利对全球股票市场的影响,本文建立了延迟套利收益与市场交易量和波动性之间的关系模型:

延迟套利收益 = 0.3354 * 交易量 + 0.0066 * 波动性 * 平均交易量  

  • 该模型表明,延迟套利收益与市场交易量和波动性均呈正相关关系。

  • 延迟套利税在不同交易日之间相对稳定。

5.2 延迟套利收益预测结果

5.2.1 英国股票市场

  • 2014-2018年期间,英国股票市场延迟套利收益在3000万至1亿英镑之间。

  • 延迟套利税为0.42个基点。

  • 如果消除延迟套利,市场流动性成本将降低17%。

5.2.2 全球股票市场

  • 2018年,全球股票市场延迟套利收益约为48亿美元。

  • 延迟套利税为0.42个基点。

  • 如果消除延迟套利,市场流动性成本将降低17%。

  • 2020年,全球股票市场延迟套利收益为65亿至71亿美元。

  • 延迟套利税为0.65个基点(基于总交易量)或0.83个基点(基于非延迟套利交易量)。

6. 研究结论与展望

6.1 研究结论
  • 本文首次利用消息数据量化了延迟套利事件,并系统分析了其对市场流动性的影响。

  • 延迟套利事件非常频繁且持续时间极短,少数参与者主导了延迟套利活动。

  • 延迟套利事件产生的收益虽然每个事件金额较小,但由于交易量巨大,其累计金额非常可观。

  • 延迟套利对市场流动性成本的影响不容忽视,消除延迟套利可以显著降低投资者的交易成本。

6.2 研究展望
  • 未来研究可以进一步探究延迟套利事件的触发因素,例如不同市场、不同资产类别、不同地理位置的信号等。

  • 例如,可以利用机器学习方法来识别延迟套利事件的模式,并预测延迟套利事件的发生。

  • 未来研究可以扩展到其他资产类别,例如期货、债券和货币等,以全面评估延迟套利对金融市场的影响。

  • 本文的研究方法可以应用于其他国家和地区,以更全面地了解延迟套利对全球金融市场的影响。

6.3 政策建议
  • 监管机构应考虑收集和分析交易所消息数据,以更好地理解高频交易对市场的影响。

  • 延迟套利事件的存在表明,传统的限价订单簿数据不足以全面了解高频交易活动。

  • 消息数据可以提供更丰富的信息,帮助监管机构识别和监控延迟套利等高频交易行为。

  • 交易所应完善消息数据的管理和保存,以便为监管机构提供可靠的数据来源。

  • 交易所应确保消息数据的完整性和准确性,并建立完善的数据保存机制。

  • 交易所还应加强对延迟套利等高频交易行为的监控和管理,维护市场公平性和稳定性。

7. 结论

延迟套利是高频交易中的一个重要现象,对市场流动性成本有显著影响。本文利用消息数据对延迟套利进行了量化分析,并提出了相应的政策建议。未来,随着数据获取和分析技术的进步,延迟套利的相关研究将更加深入和全面。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值