A Survey of LLM-based Agents in Medicine: How far are we from Baymax?
https://arxiv.org/abs/2502.11211
摘要
大型语言模型(LLMs)通过开发能够理解、推理并协助医疗任务的大型语言模型代理,正在转变医疗保健领域。本综述全面回顾了医学领域基于大型语言模型的代理,考察了其架构、应用和挑战。我们分析了医疗代理系统的关键组成部分,包括系统概况、临床规划机制、医疗推理框架以及外部能力提升。调查涵盖了主要应用场景,如临床决策支持、医疗文档、培训模拟以及医疗服务优化。我们讨论了评估框架和指标,用以评估这些代理在医疗保健环境中的表现。虽然基于大型语言模型的代理在提升医疗服务方面展现出希望,但仍存在若干挑战,包括幻觉管理、多模态整合、实施障碍以及伦理考量。调查最后强调了未来的研究方向,包括受大型语言模型架构最新发展启发的医疗推理进步、与物理系统的整合以及训练模拟的改进。此工作为研究人员和实践者提供了当前状态和未来展望的结构化概览,即大型语言模型代理在医学领域的应用。
1 引言
大型语言模型(LLMs)凭借其在文本理解、生成和推理方面的强大能力,正在改变人工智能领域。基于大型语言模型(LLM)的代理在许多领域取得了显著的成功,从创意写作(Yuan等人,2022年)到复杂决策制定(Chai等人,2025年;Wei等人,2023年),这为自动化和提升人类专业知识开辟了新机遇。这些代理通过利用LLM处理和分析复杂信息的能力被应用于各个领域(Wang等人,2024a年;Cheng等人,2024年;Xi等人,2023年)。
在医疗领域,基于LLM的代理改善了多项临床任务。最近的研究显示它们在诊断支持(Kim等人,2024a年)、患者沟通(Mukherjee等人,2024年)和医学教育(Yu等人,2024年)方面的应用。通过结合LLM、医学知识库、临床指南和医疗保健系统,这些代理旨在理解复杂的医疗情况(Wei等人,2024b年),提供基于证据的建议(Tang等人,2024年),并支持医疗保健服务交付(Mukherjee等人,2024年)。尽管有这些进步,该领域仍面临几个挑战,包括实施问题(SUN等人,2024年)、安全问题(Yuan等人,2024年)以及伦理考量(YAN等人,2025年)。解决这些挑战对于安全可靠地将基于LLM的代理整合到临床实践中至关重要。因此,需要进行全面审查,以分析医学领域中基于LLM的代理的现状和未来方向。
在本文中,我们提供了对医学领域中基于LLM的代理的系统综述,考察了重要的研究问题和未来方向。我们首先在第3节讨论架构和方法,包括系统概况、外部能力提升、临床规划和医学推理。第4节涵盖使用这些代理的各种临床和管理应用场景。第5节概述评估框架和指标,用于评估它们在医疗保健环境中的表现。最后,第6节强调提高基于大型语言模型(LLM)的代理的可靠性、安全性和临床整合的关键挑战和未来研究方向。
本综述分析了2022年至2024年间发表的60项基于LLM的医疗代理研究,这些研究是从使用医疗保健AI相关关键词的主要数据库中筛选出来的。初步搜索产生了300篇论文,经过筛选后缩减至80篇,其中60篇符合最终纳入标准。
PS: 大白Baymax,是2015年上映的迪士尼动画电影《超能陆战队》主要角色、这个巨大的白色充气机器人,有着圆润的线条,单一的表情,既像是简约版的米其林人,也像一块超大号的棉花糖,柔软又体贴。大白在片中的使命是关心他人,是你身边的健康顾问。朋辈心理辅导员就像“大白”一样治愈身边的小伙伴,传递着爱和善。
2 背景
本节概述了大型语言模型(LLMs)与基于LLM的代理之间的核心差异,并强调了在医学中部署此类代理所需的独特考虑因素。
2.1 LLM与基于LLM的代理
根据人工智能的定义,代理感知其环境并采取相应行动(Russell和Norvig,2016年)。基于LLM的代理通过整合外部知识检索、任务规划和工具调用,扩展了传统LLM的功能,使其能够在现实世界的应用中进行结构化决策(Xi等人,2023年)。与主要处理文本的标准LLMs不同,这些代理能够自主操作,并动态适应新信息和任务。
2.2 医学领域中基于LLM的代理的独特考虑因素
在医疗保健领域部署基于大型语言模型(LLM)的代理需要解决几个关键因素:
多模态整合。医疗数据涵盖文本、影像和实验室结果。代理必须处理并综合这些输入,以提供准确的决策支持(张等人,2024年)。
临床协作。医疗保健依赖于跨学科工作。代理应促进信息共享和人工智能与人类的协作,确保医生保持监督(斯特龙等人,2024年)。准确性和可靠性。鉴于对患者结果的影响,这些代理必须满足严格的验证标准,并尽量减少诊断和治疗中的错误(雷迪,2024年)。
透明性和可追溯性。临床决策必须是可审计的、可解释的,以符合医学伦理和监管要求(基瑟列娃等人,2022年)。
3 基于LLM的医疗代理架构
医学领域的基于LLM的代理需要定义明确的架构,以整合复杂的临床知识,促进医疗决策,确保安全有效的部署。本节系统地概述了它们的架构组件,重点介绍这些代理如何组织其操作以提高临床性能。
3.1 配置文件
代理的配置文件在定义和管理其在医疗系统中的角色属性、行为模式和运营能力方面起着关键作用,这通常涉及信息传播、资源分配和质量保证。在医疗应用中,代理配置文件遵循三种原型:
功能模块化。该方法将代理系统构建成专门的功能模块,每个模块负责不同的任务,如临床数据分析或诊断推理。像MEGDA(Bani-Harouni等人,2024年)这样的系统实施功能驱动的配置文件,其中明确定义了任务分配和工作流程,以提高效率和适应性。
角色专业化 通过镜像现实世界的医疗角色,该范式将代理分配给特定的临床功能,包括诊断、医学成像、治疗计划和手术协助。这些代理整合了特定领域的知识,并与医疗系统互动以执行诸如成像分析和跨学科协调等任务。在基于大型语言模型(LLM)的代理驱动的手术室模拟(Wu等人,2024年)中,LLM代理扮演不同的医疗角色以支持临床决策。
部门组织 该框架基于医学学科(如心脏病学或血液学)构建代理,建立特定领域的知识边界。代理依赖专门的疾病知识图谱和动态协作机制以促进跨学科咨询。在多代理医学应用(Tang等人,2024年)中,定义了配置文件以反映部门的专长,提高复杂医疗场景中的协调和决策。
3.2 临床规划
有效的临床规划是基于大型语言模型(LLM)的医学代理的核心。计划流程将复杂的医疗任务分解为较小的子任务,以便系统可以与每个临床领域特定的工具和数据库进行交互(Mehandru 024)。这种任务划分提高了操作效率。
图1:基于LLM的医疗代理的概念框架。本图展示了所提议的基于LLM的医疗代理的架构,包括系统配置文件、外部能力增强、临床规划和医疗推理。它支持四种代理范式:a) 单一代理,b) 顺序任务链,c) 协作专家,d) 迭代进化。该框架整合了外部工具和推理机制,以实现医学领域的应用。
任务分解
临床规划通常遵循从高阶目标到具体行动的结构化分解。单一智能体模型自主处理任务,而顺序任务链方法将规划结构化成不同步骤,如数据摄入、假设生成、治疗规划和风险评估。每个步骤与专门的医学工具互动,确保任务分离并促进精确的错误纠正(刘等人,2024a)。
跨部门的智能体协作
对于需要跨学科专业知识的复杂病例,协作专家模型指派专门的智能体到临床领域,如放射学、病理学和实验室分析。这些智能体使用标准化协议进行通信,以汇总发现并完善诊断。通过整合多个专业的见解,降低了诊断的不确定性(唐等人,2024年)。
适应性规划架构
动态的顺序任务链或协作专家框架根据实时数据和任务复杂性调整决策。例如,MDA智能体框架(金等人,2024a)采用具有预定义医学角色的LLM,它们自主或协同工作。规划层持续更新临床策略,优先考虑紧急病例,并根据新证据完善过去的决策。联邦学习机制通过整合多样化的临床经验进一步增强适应性(杜塔和萧,2024年)。
迭代自我进化超越静态工作流程,迭代进化框架实现持续改进。这些系统维护一个过去案例的经验基础,随时间精炼决策制定。自我改进机制允许代理自主整合新的医疗数据并从过往结果中学习,逐步提升准确性和可靠性(李等人,2024b;杜等人,2024)。
3.3 医疗推理
医疗推理模块通过结构化逻辑推理过程和整合实时反馈来提高诊断的准确性和透明度。
多步骤诊断推理。复杂案例通过顺序推理进行分析,链式思维方法(魏等人,2023年)生成逐步推理,树状思维方法(姚等人,2023a年)并行探索多个假设,丢弃不太可能的选项。这种结构化方法提高了诊断精度(杜塔和萧,2024年)。
反思性决策制定。为了处理临床不确定性,系统通过整合实时反馈和专家输入迭代精炼结论。受到ReAct框架的启发,它在推理和行动之间交替,识别不一致性并提高决策的稳健性(姚等人,2023b年;岳等人,2024年)。
协作群体推理。一个多代理推理框架分配专业代理——如初级保健提供者和专家——进行独立分析。他们的结论通过共识机制汇总,减少偏见并增强可靠性(左等人)。(2025年)。
记忆增强推理。通过整合长期记忆模块,使代理能够积累医学知识和过去的临床经验,随着时间的推移改进决策。这种持久的记忆使系统能够适应新的医学见解,提高推理能力,并在患者护理中保持连续性(李等人,2024b年)。此外,基于经验的机制使基于大型语言模型(LLM)的代理能够动态更新其诊断策略,从而提供更具有上下文意识和个性化的医学见解(江等人,2024年)。
3.4 外部能力提升
外部能力提升通过与真实世界的临床数据源和专业工具整合来增强代理的能力。
感知 这个子系统处理多样的临床输入,包括结构化的电子健康记录(EHRs),以访问患者病史和临床参数。先进的光学字符识别(OCR)技术将扫描文档转换为文本,而像CLIP这样的模型分析医学图像,促进全面的多模态理解。
知识整合将代理与外部源连接起来,如医学知识图谱、药物相互作用数据库和临床指南仓库。这种连接帮助代理用可信赖的来源验证其推断,从而提高其准确性和可靠性(李等人,2024a年;黄等人,2024a年)。
行动层允许代理通过使用专业工具(如医学计算器、电子健康记录界面和图像分析软件)来执行临床任务。系统在处理复杂数据时调用额外功能,确保其输出完整并考虑上下文(史等人,2024年;朱等人,2024年)。
4 应用场景
基于大型语言模型(LLM)的代理被应用于医学的各个领域。本节概述了主要应用场景,并在表1中提供了总结。
4.1 临床决策支持与诊断
在临床决策支持与诊断领域,基于LLM的多代理框架通过解决独立LLM的局限性来改善临床决策。该领域的系统为代理分配专门的角色,用于意图识别、诊断推理和治疗规划,以便医疗服务既个性化又对上下文敏感。例如,Dutta和Hsiao提出的框架(Dutta和Hsiao,2024年)模拟医生与患者之间的互动,以精炼诊断推理,并在MedQA等数据集上显示出更好的性能。Ke等人开发的系统(Ke等人,2024年)通过使用提供专家意见和关键评估的代理来减少诊断中的认知偏见。其他系统,如MedAide(魏等人,2024b年),协调包括预诊断、诊断、用药和诊断后在内的各个阶段的代理,而框架如MDagents(金等人,2024c年)和EHRagent(唐等人,2024年)表1:LLM-Agents在医学领域应用概览。
4.2 临床数据分析和文档记录
在临床数据分析和文档记录方面,基于大型语言模型(LLM)的代理通过使用先进的架构和检索增强生成技术,在处理结构化及非结构化数据方面表现出色。王等人提出的ColaCare系统(王等人,2024b)整合了不同的代理来执行任务,如预测死亡率和分析医院再入院情况,在MIMIC-III和MIMIC-IV数据集上展示了改进的性能。李等人的工作(李等人,2024年)引入了Sporo AI Scribe,以应对临床文档的可变性和复杂性挑战。苏达尚拉的研究(苏达尚拉等人,2024年)表明,技术性医学报告可以通过使用迭代自我反思和检索增强生成技术转换为患者友好的格式。此外,李等人提出的Agent Hospital(李等人,2024b)通过生成完整的互动,提高了诊断和治疗能力,从而为模拟系统做出了贡献。
4.3 医学培训和模拟
在医学培训和模拟方面,模拟环境用于测试和完善在临床实践中使用前的大型语言模型(LLM)代理。像ClinicalLab(严等人,2024年)和AI Hospital(范等人,2024年)这样的系统通过模拟多个专业和复杂医疗场景中的互动来评估诊断和治疗性能。李等人提出的Agent Hospital(李等人,2024b)系统通过允许通过大规模模拟进行重复训练,进一步改善了这一过程。在医学教育领域,像MEDCO(魏等人,2024a)这样的系统支持训练诊断推理和协作问题解决能力,而AIPatient(余等人,2024年)则将电子健康记录与知识图谱相结合,以模拟真实的临床场景。系统SurgBox(吴等人,2024年)为手术程序提供了一个带有实时决策支持的培训环境,该环境已通过与实际手术记录对比得到验证。
4.4 医疗服务优化
在医疗服务优化方面,基于大型语言模型(LLM)的代理通过自动化患者教育、数据收集和支持服务等任务来改善医疗保健的提供。研究表明,自动化这些非诊断性任务能够减轻医疗专业人员的工作负担,同时维持服务质量(Swarms,2025年;穆克吉等人,2024年;莱蒙娜等人,2024年)。未来某些诊断任务的自动化也具有潜力,包括内窥镜检查和手术(查德贝克等,2023年)。这些实施已在运营效率和患者满意度方面带来了可衡量的改进。
5 评估与基准测试
评估基于大型语言模型的医学代理对于确认其可靠性、安全性和临床有效性至关重要。需要一个全面的评估框架来衡量不同医疗任务的性能,识别限制,并指导临床应用中的改进。评估指标和基准类别概述在附录中的表2中提供。
5.1 基准测试类别
基于大型语言模型(LLM)的医疗代理的基准测试可以分为三类。
静态问答基准测试通过具有预定答案的任务来评估医学知识。例如,MedQA(金等人,2020年)模拟了美国医学院入学考试(USMLE)风格的问题,MedMCQA(帕尔等人,2022年)包含194,000个问题,涵盖2,400个主题,覆盖21个学科,PubMedQA(金等人,2019年)评估对生物医学研究的理解,MMLU(亨德里克斯等人,2021b,a)提供跨领域的单选题。尽管这些数据集对于测试事实知识很有用,但它们没有捕捉到临床实践中看到的互动和顺序决策。
基于工作流程的模拟基准测试通过多个阶段模仿临床决策。例如,MedChain(刘等人,2024a)包含来自19个专业的12,163个病例,并使用7,338张医疗图像,AI医院(范等人,2024年)使用MVME数据集评估医疗服务提供者与患者之间的互动,AgentClinic(施密德尔加尔等人,2024b)为多模态分析和基于对话的场景提供版本,而ClinicalLab(严等人,2024年)在24个部门和150种疾病中测试诊断性能。这些基准反映了临床推理的动态以及当患者信息变化时所需的适应,尽管它们的复杂性使得标准化具有挑战性。
开发了自动化评估框架以减少对人工评估员的依赖。例如,AI-SCE(梅汉德鲁等人,2024年)使用OSCE-
基于系统评估的框架,以及刘等人(2024b)在泌尿学中应用自动化评估方法,使用标准化患者和检索增强技术。
5.2 针对特定任务的评估指标
精确匹配指标用于具有明确正确答案的任务,如多项选择题。在这些任务中,通过直接比较模型输出与参考答案来计算准确性、精确度和召回率。基准测试如MedQA(金等人,2020年)和MedMCQA(帕尔等人,2022年)经常使用这些指标。虽然这些指标对于评估事实知识很有效,但它们可能不足以应对涉及复杂推理或详细解释的任务。语义相似性指标应用于文本生成任务,如编写临床报告或诊断摘要。这些指标评估生成的文本意义与参考文本的匹配程度。诸如BLEU(帕皮内尼等人,2002年)之类的指标通过衡量n-gram重叠,ROUGE(林,2004年)通过评估摘要质量,以及BertScore(张等人,2020年)通过使用上下文嵌入来捕捉语义关系,已被应用于如ClinicalLab和MedChain等基准测试。
基于大型语言模型的评估指标利用语言模型本身根据连贯性、相关性和推理质量等因素评估输出。例如,ChatCoach(黄等人)(2024a)使用大型语言模型(LLM)来评估患者咨询中沟通和决策的有效性,而检索增强评估框架(刘等人,2024b)在RJUA-SPs中的应用则衡量输出与标准临床路径的一致性。这种方法为评估复杂的多步骤临床任务提供了一种可扩展和适应性强的方法。
6 讨论
将基于大型语言模型(LLM)的代理集成到医疗工作流程中带来了挑战和机遇。尽管先前的工作已经取得了成功,但这个领域仍处于早期阶段。几个重大挑战依然存在,许多机遇还需要进一步探索,以在医疗保健应用中充分发挥其潜力。以下部分将讨论这些挑战和机遇。
6.1 技术挑战
6.1.1 幻觉管理
LLM产生的幻觉——即模型生成错误或误导性信息的情况——在医疗环境中构成了重大风险,可能导致错误的诊断和治疗(黄等人,2024b)。基准测试如Med-HallBench(左和江,2024年)和HaluEval(李等人,2023年)强调了需要可靠的验证系统和错误预防机制,特别是在多代理场景中,错误可能会传播。未来的研究应专注于开发验证系统和动态错误校正方法,这些方法能够用实时、经过验证的医疗知识不断更新模型。
6.1.2 多模态和多语言集成
基于大型语言模型(LLM)的代理必须处理各种数据类型,包括临床文本和医学图像,并应对不同语言和文化中医学术语的变异性(李等人,2024a;梅汉德拉等人,2024年)。文档标准和地区实践的差异增加了这种复杂性。开发能够在多语言和多模态环境中可靠运行的模型至关重要。
6.1.3 跨部门整合
医疗保健环境涵盖多个部门,如急诊、门诊和长期护理,每个部门都有其自身的工作流程和文档标准(邱等人,2024年)。在这些环境中实现互操作性和准确的数据交换具有挑战性。未来的工作应专注于开发通用标准和适应性界面,以协调各部门的术语和流程,确保基于LLM的代理之间有效沟通。
6.2 评估挑战
评估基于LLM的医疗代理具有挑战性。传统的静态基准测试关注固定的问答任务,无法捕捉临床工作流程的动态和互动方面,如顺序决策、适应性推理以及与患者和临床医生的有效沟通(金等人,2020年;施密德尔加尔等人,2024b年)。此外,许多医疗应用需要整合异构数据类型,包括文本记录、图像和实验室结果,这要求评估框架能够准确模拟多模态交互(刘等人,2024a;范等人,2024年)。像BLEU(Papineni等人,2002年)和ROUGE(Lin,2004年)这样的标准语言度量指标仅评估文本重叠,并不反映临床结果,如诊断准确性。此外,数据集偏差——如特定条件的过度代表——可能会限制评估结果在不同医疗保健环境中的普适性(Yan等人,2024年)。未来的研究应开发综合的多模态评估框架,结合定量测量与定性临床评估,并在减少数据集偏差的同时建立标准化的临床性能指标(Mehandru等人,2024年)。
6.3 实施障碍
6.3.1 系统整合复杂性
像北极星医疗系统(Mukherjee等人,2024年)这样涉及数百万专业人士和既定决策流程的大规模系统,展示了整合的复杂性。尽管许多大型语言模型框架在特定应用中证明很有价值,但它们更广泛的整合并不总是能带来运营效率的提升。
6.3.2 资源分配困境
开发和维护基于大型语言模型的代理需要大量的计算资源,导致医疗机构成本高昂。这样的投资可能产生并非完全可靠的系统,引发对其成本效益的关注。
6.4 伦理和隐私问题
6.4.1 以患者为中心的设计
由大型语言模型(LLM)代理驱动的医疗诊断系统目前收到的来自患者和护理人员的反馈有限,尽管在决策过程中包含他们的观点非常重要(Kim等人,2024b)。大多数现有框架仅关注与医生的互动。一个更负责任的方法将整合患者叙述、医生观察和护理人员的意见,以支持真正以患者为中心的过程。
6.4.2 算法偏见
通用和医学微调的LLM都可能表现出各种偏见,包括社会和认知偏见。BiasMedQA基准测试(Schmidgall等人,2024a)评估了最先进的医疗LLM中的七种类型的偏见,并发现精确度可能降至80%以下,有些模型的表现甚至低至50%。这引发了对这些模型在解决偏见方面的可靠性的担忧。医疗代理必须设计为做出负责任的决策,减少偏见对于实现这一目标至关重要。
6.4.3 隐私和安全威胁
用于训练的数据可能在文本生成过程中暴露,或者通过推理攻击(Kandpal等人,2023年)或数据提取(Carlini等人,2021年)等技术提取。在部署医疗代理时,根据如欧盟的《通用数据保护条例》(GDPR)(GDPR,2016年)和美国《健康保险可携性和责任法案》(HIPAA)(Act,1996年)等法规保护敏感信息至关重要。开发LLM代理的数据收集必须优先考虑隐私保护(Dou等人,2024年)建议使用LLM进行自主数据生成和标记,作为保护隐私的手段。此外,如差分隐私等保护隐私的数据处理方法可以向数据中添加受控噪声,以便个别记录不会显著影响整体结果,同时保留数据的效用。
6.5 未来机遇与应用
6.5.1 对医学推理的O1和R1启发
基于大型语言模型(LLM)的医学智能体的发展可以从DeepSeek R1和推理时扩展策略中汲取洞察。DeepSeek R1(郭等人,2025年)的研究表明,结合强化学习和长链推理能够实现更准确且具有上下文意识的医学决策,为提高自主医学智能体提供了潜力(法拉伊·德·帕伊瓦等人,2025年)。通过迭代自我进化不断优化AI生成的诊断和治疗建议,基于LLM的智能体可以更好地整合多模态临床数据,包括电子健康记录、医学图像和实验室发现(徐等人,2024年)。推理时扩展允许LLM有更多推理时间,已被证明可以提高复杂任务如鉴别诊断和治疗规划的性能(黄等人,2025年),这与临床推理中使用的假设演绎法一致。未来研究应探索基于LLM的智能体如何根据任务复杂性动态调整推理时间,同时结合基于强化学习的优化技术以增强临床环境中的适应性和可靠性。
6.5.2 与物理系统的整合
将基于大型语言模型(LLM)的代理从虚拟应用扩展到与物理系统集成代表了医疗保健领域的重要进步。虽然大型语言模型在数据分析和决策支持方面表现出色,但将它们与医疗机器人等物理系统连接起来,可能实现直接的患者护理。这样的系统可能会结合语言处理与物理输入来支持手术辅助和患者监测等任务。例如,赋能护理机器人(赵等人,2025年)就是一种潜在的方法。然而,这种集成带来了关于安全和实时性能的挑战。解决技术限制、确保系统可靠性以及解决伦理问题是成功集成的必要条件。硬件系统必须准确执行大型语言模型的输出,因为错误可能会危及患者安全,而高昂的成本或技术复杂性可能会限制系统的可用性。未来的工作应着重于改善基于大型语言模型的代理与物理系统的集成,并创建实用的实施框架。
6.5.3 训练模拟的进展
当前的医疗大型语言模型代理通常使用模拟医院来进行训练,例如代理医院框架,它通过合成病人互动使医生代理自主演化(李等人,2024b)。将这些模拟扩展以包含教育性医疗游戏,可以提高训练数据的生成和学习体验,尽管数据质量方面的挑战仍然存在。由人工智能驱动的患者模拟提供结构化反馈,在提升临床决策方面已被证明是有效的(Brigge等人,2024年),但验证这些游戏生成的数据仍然需要大量资源。
7 结论
本调查审视了基于大型语言模型(LLM)的医疗代理,涵盖了它们的架构、应用和挑战。虽然这些代理增强了诊断、数据分析和临床工作流程,但在幻觉管理、多模态整合和医疗推理准确性方面仍存在问题。未来的工作应关注实时错误校正、改进的多模态融合和混合推理,以提高可靠性和临床效用。
限制
本调查存在几个固有的限制需要考虑。由于基于大型语言模型的医疗代理发展迅速,我们的综述主要涵盖了2022年至2024年初发表的作品,这意味着未来的发展可能会引入本分析中未捕捉到的新架构和方法。此外,虽然我们力求全面覆盖,但主要关注了PubMed、ACM数字图书馆、arXiv和Google Scholar等主要学术数据库中的英文出版物。在其他语言或地区数据库发表的宝贵工作可能未包含在我们的分析中。这些限制反映了在快速发展的领域中进行调查的固有约束,而非被审查研究本身的缺陷。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈