目前,Transformer 模型展现出了强大的性能。而了解 Transformer 模型的参数量对于评估模型的规模、复杂度以及计算资源需求等具有重要意义。下面将详细阐述如何计算 Transformer 模型的参数量。
一、Transformer 模型的基本结构回顾
Transformer 模型主要由编码器(Encoder)和解码器(Decoder)组成。其中,编码器包含多个相同的层级,每个层级包括多头自注意力机制(Multi - Head Self - Attention)和前馈神经网络(Feed - Forward Neural Network)这两个子层。解码器的结构与编码器类似,但多了一个注意力机制(Attention)子层,用于关注编码器的输出。
二、Transformer 各部分参数量的计算方法
-
嵌入层(Embedding Layer)
-
- 嵌入层的作用是将输入的词或标记转换为固定维度的向量。假设词汇表的大小为 V,嵌入向量的维度为 d_model。那么嵌入层的参数量就是 V × d_model。例如,当词汇表大小 V = 10000,d_model = 512 时,嵌入层的参数量为 10000 × 512 = 5,120,000。
-
多头自注意力机制(Multi - Head Self - Attention)
-
- 多头自注意力机制由多个注意力头组成。每个注意力头包括三个线性变换,分别是查询(Query)、键(Key)和值(Value)的变换。假设有 h 个注意力头,每个头的维度为 d_k(通常 d_k = d_model / h)。
- 对于每个注意力头的查询、键和值的变换,参数量分别是 d_model × d_k。因为有 h 个注意力头,所以总共有 3 × h × d_model × d_k 参数用于这些线性变换。
- 例如,当 d_model = 512,h = 8 时,每个注意力头的维度 d_k = 512 / 8 = 64。那么查询、键和值变换的总参数量为 3 × 8 × 512 × 64 = 786,432。
- 另外,在多头自注意力机制的最后,还有一个线性变换将拼接后的各个注意力头的输出转换回 d_model 维度,这部分的参数量是 h × d_k × d_model。在上述例子中,这个线性变换的参数量为 8 × 64 × 512 = 262,144。
- 所以,整个多头自注意力机制的参数量为 3 × h × d_model × d_k + h × d_k × d_model = 2 × h × d_model × d_k + h × d_k × d_model = 3 × h × d_model × d_k(因为在计算过程中,前面的三个线性变换可以看作是相当于两个的参数量,加上最后的线性变换,所以总参数量可以表示为 3 × h × d_model × d_k)。不过更准确的计算是将各个部分相加,如上述例子中的总参数量为 786,432 + 262,144 = 1,048,576。
-
前馈神经网络(Feed - Forward Neural Network)
-
- Transformer 中的前馈神经网络通常是位置 - 智能的,每个位置都有相同的结构。它包括两个线性变换,中间有一个激活函数(一般是 ReLU)。假设前馈神经网络的隐藏层维度为 d_ff。
- 第一个线性变换的参数量是 d_model × d_ff,第二个线性变换的参数量是 d_ff × d_model。因此,前馈神经网络的参数量为 d_model × d_ff + d_ff × d_model = 2 × d_model × d_ff。
- 例如,当 d_model = 512,d_ff = 2048 时,前馈神经网络的参数量为 2 × 512 × 2048 = 2,097,152。
-
编码器层级之间的参数
-
- 一个完整的编码器层级包括多头自注意力机制和前馈神经网络,以及残差连接和层归一化(Layer Normalization)部分。层归一化部分的参数量相对较少,每个层归一化有 2 × d_model 个参数(包括一个缩放参数和一个偏移参数)。
- 对于一个编码器层级,多头自注意力机制的参数量为 1,048,576(以之前的例子为例),前馈神经网络的参数量为 2,097,152。两个层归一化(分别在多头自注意力机制和前馈神经网络之后)的参数量为 2 × 2 × 512 = 2,048。所以一个编码器层级的总参数量约为 1,048,576 + 2,097,152 + 2,048 = 3,147,776。
- 如果有 N 个编码器层级,编码器部分的总参数量约为 N × 3,147,776(以这个例子中的单层参数量为例)。
-
解码器部分的参数
-
- 解码器的结构与编码器类似,但多了一个注意力机制子层,用于关注编码器的输出。这个额外的注意力机制的参数量计算与多头自注意力机制类似。
- 假设解码器有 M 个层级,除了与编码器类似的多头自注意力机制(用于解码器内部的自注意力)、前馈神经网络和层归一化部分外,还会增加一个注意力机制(用于关注编码器输出)的参数量。同样以 d_model = 512,h = 8 为例,这个额外的注意力机制的参数量为 3 × h × d_model × d_k + h × d_k × d_model = 1,048,576(与编码器的多头自注意力机制参数量相同)。
- 所以,一个解码器层级的总参数量约为编码器层级的参数量(3,147,776)加上这个额外的注意力机制的参数量(1,048,576),即 3,147,776 + 1,048,576 = 4,196,352。如果有 M 个解码器层级,解码器部分的总参数量约为 M × 4,196,352。
-
输出层(Output Layer)
-
- 输出层通常是一个线性变换,将解码器的输出映射到词汇表的维度。其参数量为 d_model × V。例如,当 d_model = 512,V = 10000 时,输出层的参数量为 512 × 10000 = 5,120,000。
三、总结 Transformer 模型的总参数量
Transformer 模型的总参数量等于嵌入层参数量 + 编码器部分参数量 + 解码器部分参数量 + 输出层参数量。通过上述详细的计算步骤,我们可以较为准确地计算出 Transformer 模型的参数量,这有助于我们在实际应用中根据需求来调整模型规模,以平衡模型性能和计算资源消耗。例如,在资源有限的设备上,我们可以减小模型的参数量,如减少编码器或解码器的层级数,或者降低 d_model 和 d_ff 的维度等,来适应设备的计算能力。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈