DeepSeek完全本地部署,一键运行整合包来了!

最近DeepSeek太太太火了!我料到了国产大模型有一天可以吊打ChatGPT,但没想到这么快!

一夜之间,中国AI大模型DeepSeek-R1横扫硅谷,迅速引爆全球科技圈,搞得美国都在讨论要封禁DeepSeek了!

DeepSeek-R1不仅性能媲美OpenAI O1,更做到了完全开源,它的发布,让我们可以更好的使用开源大语言模型运行推理任务。

而我呢,一如既往的选择直接出手,分享三种方法,让大家能够100%快速在本地拥有地表最强的AI大模型DeepSeek!

提到的三种方法,都给大家打包好了,大家可以添加下方回复关键词“DeepSeek”按需下载!
在这里插入图片描述
简介:DeepSeek开源“新王者”

先简单给大家介绍一下DeepSeek,在国内7家头部的大模型创业公司当中,DeepSeek可以说是最不显山不露水的一家。

2023年4月,幻方量化宣布成立,集中资源和力量,探索AGI的本质。在一年多的时间里,更新出了多款DeepSeek大模型。

DeepSeek本次全球“刷屏”,起因是1月20日其正式发布推理大模型DeepSeek-R1,该模型在数学、编程和推理等关键领域的表现,能与OpenAI的最强推理模型o1深度PK,但其API调用成本却低了90%-95%,而且它是完全开源的!

更为瞩目的是,技术论文中写道:“综合评估表明,之前发布的DeepSeek-V3已成为当前可用的最强开源模型,其性能可与GPT-4o和Claude-3.5-Sonnet等领先的闭源模型相媲美;”

而最新的DeepSeek-R1,甚至超过ChatGPT用大价钱训练出来的旗舰模型o1!这一切,是在不到600万美元的投入和2048块低性能的H800芯片的条件下完成的,训练时间仅用两个月。

这种“四两拨千斤”的模式,颠覆了人们对OpenAI“大力出奇迹”式的固有认知,结果令全球侧目。

与之相对比,根据黄仁勋在GTC2024上的演讲内容,GPT-4 MoE使用8000个H100训练了90天,合计约为17280千卡时,相当于DeepSeek的6.2倍。

那我当然是直接出手,给大家准备了三个可以快速在本地使用DeepSeek的方法,快随我去看看吧!

**方法一:Ollama,**一键部署2000种大模型

Ollama,它是一个轻量级、可扩展的大模型框架,就像是一位能够召唤各种大语言模型的魔法师。(文末附下载

它不仅支持Windows、Linux、MacOS这些主流操作系统,还拥有一个庞大的模型库,包括Qwen、Llama等2000+大语言模型,最新的DeepSeek-R1当然也是支持的

你只需轻轻一念咒语(输入命令),就能让这些模型为你所用,是不是很酷?

1、Windows安装

直接从下载页面下载相对应系统的安装程序,Windows安装程序选择Windows的安装包,点击“Download for Windows(Preview)”。

下载好以后,双击安装包,之后一直点击“install”安装即可。安装完成之后,打开一个cmd命令窗口,输入“ollama”命令,如果显示ollama相关的信息就证明安装已经成功了,如下图:

2、Mac安装

从下载页面,下载苹果系统相对应的安装程序,即点击“Download for Mac”。

下载好后,双击安装包,点击“install”,等待Ollama自动安装。

3、下载DeepSeek-R1模型

在安装完成后的Ollama中/或者你自行打开一个命令提示窗,输入以下指令,即可一键下载DeepSeek-R1大模型:

ollama run deepseek-r1

默认会下载的模型是7B参数Q4的量化版,6G小显存即可使用。安装完成后,即可在提示窗中,直接向DeepSeek-R1提问了!

如果下次要使用DeepSeek-R1,只需重新打开一个命令提示窗,然后输入以下代码即可唤醒:

ollama run deepseek-r1

方法二、ChatWise,可视化使用大模型

有很多大神封装了一些可以快速可视化使用大模型的开源项目,比如ChatWise、Lobe Chat,今天先给大家介绍一下ChatWise。(文末附下载)

ChatWise是一个独立开发者制作的AI工具,界面虽然简洁,但功能十分强大。

ChatWise可作为大模型的可视化界面,后端对接Ollama即可支持几乎所有大语言模型的可视化调用。

1、运行DeepSeek-R1模型

还是我们上文提到的,先安装Ollama,然后在命令提示行输入以下代码,以启动DeepSeek-R1大模型:

ollama run deepseek-r1

然后在ChatWise的模型列表中,会自动刷新以支持新的大模型。

2、快速使用

接下来就可以在ChatWise的界面中,跟DeepSeek-R1愉快滴聊天、画个图表、写个代码什么的,简直太香了。

方法三、DeepSeek便携版,CPU都可以用

DeepSeek很强,但即便是7B参数的精简版,也需要至少6G显存才可使用。

这不有我呢嘛,我之前直接出手,给大家分享过一款DeepSeek“中杯”,只有2B参数。无需显卡,CPU都可以运行!(文末附下载)

保证大家可以在普通电脑上运行,而且无需显卡都可以玩哦~这就像是给“大模型”做了一个“迷你版”,让每个人都能轻松体验。

1、免费离线懒人包:一键启动,轻松体验

为了让大家能够轻松体验到该项目的魅力,我当然是:无所谓,我会出手.jpg,为大家准备了一个免费整合包。

你只需下载到本地,解压并双击“一键启动”,项目会自动打开浏览器运行。如果没有自动打开浏览器,请自行复制以下网址在浏览器打开:http://127.0.0.1:7860。系统就会自动运行并打开一个简单的用户界面。

2、使用方法非常简单:

  • 输入图片:把你的图片拖进来。

  • 输入提示词:告诉它你想要的效果,比如“高清”、“艺术风格”等。

  • 设置各种参数:一般默认即可,如果你是“技术大神”,也可以根据需要调整参数。

  • 点击“提交”按钮:这就像是给它施了一个“生成咒”,稍等片刻,即可在底部看到大模型的回答了。

另外该整合包还支持AI图片生成功能,可谓加量不加价:

随着技术的不断发展,我们期待以DeepSeek为代表的国产大模型,能在未来的日子里,为AI技术的探索和应用带来更多的可能性。感兴趣的朋友们,快去试试吧!

今天就聊到这了,上文提到的三种方法,都给大家打包好了,大家可以添加下方回复关键词“DeepSeek”按需下载!
在这里插入图片描述

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
在这里插入图片描述

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### deepseek 微信聊天机器人的本地部署 #### 准备工作 为了成功地将deepseek模型集成至微信环境,需先完成一系列前期准备活动。这括但不限于获取必要的API密钥以及配置开发环境等操作[^1]。 #### 部署BOT服务 通过Docker容器技术来简化安装流程是一个不错的选择。具体来说,可以利用`docker-compose`工具一键式搭建所需的LobeChat服务平台。执行如下指令即可实现自动化下载镜像文件并启动关联的服务实例: ```bash docker-compose up -d ``` 上述命令会依据预定义好的配置文件,在后台默默建立起一套完整的应用栈支持体系结构[^3]。 #### 修改配置参数 针对特定应用场景下的微调是必不可少的一环。这里特别需要注意调整几个关键性的连接选项——比如服务器监听地址对应的端口数值、用于远程通信的基础URL路径还有验证身份所必需的API Key令牌等内容项。这些设置通常可以在项目的配置文件里找到,并按照官方文档指导进行适当更改以适应实际需求场景的要求[^2]。 #### 整合deepseek模型入BOT框架内 最后一步则是把已经训练完毕的deepseek算法模块嵌入到之前构建起来的消息处理逻辑当中去。这一过程可能涉及到代码级别的改动或是借助某些插件机制达成目的;无论如何,确保两者之间能够顺畅交互从而形成一个有机整体才是最终目标所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值