解析大模型的参数世界:权重、偏差及不可解释性

当我们谈论大模型时,通常指的是模型拥有庞大的参数数量和强大的数据处理能力。

在这篇文章中,我们将探讨神经网络中的模型参数——这些看似简单的数值如何决定着神经网络的行为。

模型参数的作用

在机器学习模型中,参数扮演着至关重要的角色,它们犹如幕后操盘手,指引着模型如何将输入数据转化为预期的输出结果。

通俗地讲,可以把模型想象成一个复杂的计算器,它会对输入数据进行一系列的数学运算,最终得出输出结果。而在这个运算过程中所使用的各种数值,就构成了模型的参数。

可以说模型参数是模型的精髓,她们的数量和质量直接决定了模型的性能和能力。

参数数量越多,模型越复杂,能够学习到的模式也就越复杂,但同时也意味着更高的计算成本和训练难度。高质量的参数能够使模型更好地拟合训练数据,从而在实际应用中取得更好的效果。

大模型就是通过庞大的参数量来实现复杂模式的学习,并最终将输入数据映射到输出结果。

具体来说,模型参数的作用主要包括特征提取、模式学习以及预测输出。

特征提取

特征提取是从原始数据中提取有价值信息的过程。通过特征提取,可以将原始数据转换成更易于分析和识别的特征。

自然语言处理

在自然语言处理任务中,模型可以从文本中提取出不同层次的特征。例如,使用BERT模型时,早期的模型网络层可能会学习到单词的基本含义和语法关系,而后期层则会学习到更复杂的句子结构和上下文语义。对于输入的句子“猫坐在垫子上”,模型可以提取出“猫”是主体,“坐”是动作,“垫子”是位置等信息,从而理解整个句子的含义。

计算机视觉

在卷积神经网络(CNN)中,模型可以从输入图像中提取出不同层次的特征。例如,输入一张猫的图片,早期卷积层可能会学习到边缘和颜色等低级特征,而后期卷积层则会学习到猫的耳朵、眼睛和胡须等高级特征。

下面这张图是模型在不同的卷积网络层,所提取到的不同级别的特征。下面是最低级的特征,上面是最抽象、最综合和最高级的特征。

图片

Image Source: https://stats.stackexchange.com/questions/146413/why-convolutional-neural-networks-belong-to-deep-learning

图中每一列代表不同类别的图像(人脸、汽车、大象和椅子),而每一行代表神经网络中不同层次的特征激活。

首先原始输入图像被输入到神经网络中,用于训练或测试模型。

最下面的一行展示了神经网络较浅层的特征激活。在这一层,你可以看到特征图主要关注于图像中的一些基本形状和边缘,如线条和简单的纹理。这些是构建更复杂特征的基础。

中间一行展示了较深层的特征激活。在这里,特征开始变得更加复杂和抽象,可以看到更具体的形状和结构,例如汽车的窗户格局和大象的身体轮廓。

最上面一行展示了最深层的特征激活。这些激活非常抽象,是对输入图像高级语义的表示,这些特征直接用于分类任务。在这一层,模型已经能够从高层次理解图像内容,辨别出各种不同的对象。

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

模式学习

模式学习是基于提取到的特征,建立特征与目标之间映射的过程。即模型在训练过程中,通过对大量数据的分析和学习,形成对输入数据与输出结果之间关系的理解。

所以特征学习主要是将输入信息转化成模型能够理解和处理的形式。模式学习则进一步从特征信息中发现蕴藏的规律和模式。

自然语言处理:

文本情感分析任务中,特征学习可以提取文本中的词语、句子的情绪倾向等特征。

模式学习可以学习到不同情感类别文本之间的模式,例如积极情感的文本中通常包含“快乐”、“喜欢”等词语,消极情感的文本中通常包含“悲伤”、“愤怒”等词语。

计算机视觉:

图像识别任务中,特征提取可以提取图像中的边缘、纹理、颜色等特征。

模式学习可以学习到不同类别物体之间的模式,例如猫的耳朵、眼睛、鼻子等特征与“猫”类别的关联程度,狗的毛色、体型等特征与“狗”类别的关联程度。

例如模型根据一些特征组合,如耳朵为三角形,眼睛细长,有可能判断这只动物是猫。

图片

预测输出

预测输出是指模型利用提取到的特征和学到的模式,对输入数据进行处理并生成相应的预测结果。也就是将模型投入实际应用,对新的数据进行预测,这也是我们整模型训练的最终目的。

自然语言处理

在情感分析的任务中,用户输入一条评论,模型通过提取文本特征(如情感词汇、语气等)和模式学习,预测这条评论的情感倾向(如“正面”或“负面”)。

计算机视觉

在图像识别任务中,输入一张图片,模型通过提取图像特征(如边缘、颜色、形状等)和模式学习,预测图片中包含的物体类别。例如,输入一张猫的图片,输出预测类别“Cat”(猫)。

在目标检测任务中,输入一张复杂场景的图片,模型通过学习到的目标特征,在图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值