AI模型训练和评估的最佳实践:Transformers Trainer与Evaluate库详解

在机器学习中,微调模型和评估其性能是确保模型有效性的重要步骤。Hugging Face 提供了强大的工具——Transformers Trainer 和 Hugging Face Evaluate,以简化这些过程。本文将详细介绍这两个模块的功能,并通过实际代码示例帮助您理解它们的使用方法。

一、Transformers 微调训练模块 Trainer

1. 简化模型的微调训练

Transformers Trainer 模块旨在简化模型的微调训练过程。假设我们已经有了一个预训练的模型,并且希望在自定义数据集上进行微调。Trainer 模块通过封装复杂的训练流程,使得微调变得更为直观和高效。

示例代码:

from transformers import Trainer, TrainingArguments, BertForSequenceClassification, BertTokenizer
from datasets import load_dataset

# 加载数据集
dataset = load_dataset('imdb')

# 加载预训练模型和分词器
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 数据预处理
def preprocess_function(examples):
    return tokenizer(examples['text'], truncation=True, padding='max_length')

encoded_dataset = dataset.map(preprocess_function, batched=True)

# 定义训练参数
training_args = TrainingArguments(
    output_dir='./results',          # 输出目录
    evaluation_strategy="epoch",     # 评估策略
    learning_rate=2e-5,              # 学习率
    per_device_train_batch_size=8,   # 训练批次大小
    per_device_eval_batch_size=8,    # 评估批次大小
    num_train_epochs=3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值