- 按控制台的提示输入groupId、artifactId、version、package等信息,一路回车确认后,会生成一个和你输入的artifactId同名的文件夹,里面是个maven工程:
Define value for property ‘groupId’: com.bolingcavalry
Define value for property ‘artifactId’: socketwordcountdemo
Define value for property ‘version’ 1.0-SNAPSHOT: :
Define value for property ‘package’ com.bolingcavalry: :
Confirm properties configuration:
groupId: com.bolingcavalry
artifactId: socketwordcountdemo
version: 1.0-SNAPSHOT
package: com.bolingcavalry
- 用IEDA导入这个maven工程,如下图,已经有了两个类:BatchJob和StreamingJob,BatchJob是用于批处理的,本次实战用不上,因此可以删除,只保留流处理的StreamingJob:
应用创建成功,接下来可以开始编码了;
编码
您可以选择直接从GitHub下载这个工程的源码,地址和链接信息如下表所示:
| 名称 | 链接 | 备注 |
| :-- | :-- | :-- |
| 项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
| git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
| git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
这个git项目中有多个文件夹,本章源码在socketwordcountdemo这个文件夹下,如下图红框所示:
接下来开始编码:
- 在StreamingJob类中添加静态内部类WordWithCount,这是个PoJo,用来保存一个具体的单词及其出现频率:
/**
- 记录单词及其出现频率的Pojo
*/
public static class WordWithCount {
/**
- 单词内容
*/
public String word;
/**
- 出现频率
*/
public long count;
public WordWithCount() {
super();
}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
/**
-
将单词内容和频率展示出来
-
@return
*/
@Override
public String toString() {
return word + " : " + count;
}
}
- 把所有业务逻辑写在StreamJob类的main方法中,如下所示,关键位置都加了中文注释:
public static void main(String[] args) throws Exception {
//环境信息
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//数据来源是本机9999端口,换行符分隔,您也可以考虑将hostname和port参数通过main方法的入参传入
DataStream text = env.socketTextStream(“localhost”, 9999, “\n”);
//通过text对象转换得到新的DataStream对象,
//转换逻辑是分隔每个字符串,取得的所有单词都创建一个WordWithCount对象
DataStream windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
@Override
public void flatMap(String s, Collector collector) throws Exception {
for(String word : s.split(“\s”)){
collector.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy(“word”)//key为word字段
.timeWindow(Time.seconds(5)) //五秒一次的翻滚时间窗口
.reduce(new ReduceFunction() { //reduce策略
@Override
public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception {
return new WordWithCount(a.word, a.count+b.count);
}
});
//单线程输出结果
windowCounts.print().setParallelism(1);
// 执行
env.execute(“Flink Streaming Java API Skeleton”);
}
构建
- 在pom.xml文件所在目录下执行命令:
2021年Java中高级面试必备知识点总结
在这个部分总结了2019年到目前为止Java常见面试问题,取其面试核心编写成这份文档笔记,从中分析面试官的心理,摸清面试官的“套路”,可以说搞定90%以上的Java中高级面试没一点难度。
本节总结的内容涵盖了:消息队列、Redis缓存、分库分表、读写分离、设计高并发系统、分布式系统、高可用系统、SpringCloud微服务架构等一系列互联网主流高级技术的知识点。
目录:
(上述只是一个整体目录大纲,每个点里面都有如下所示的详细内容,从面试问题——分析面试官心理——剖析面试题——完美解答的一个过程)
部分内容:
对于每一个做技术的来说,学习是不能停止的,小编把2019年到目前为止Java的核心知识提炼出来了,无论你现在是处于什么阶段,如你所见,这份文档的内容无论是对于你找面试工作还是提升技术广度深度都是完美的。
不想被后浪淘汰的话,赶紧搞起来吧,高清完整版一共是888页,需要的话可以点赞+关注
-1720105247830)]
[外链图片转存中…(img-z7nXWr17-1720105247830)]
[外链图片转存中…(img-vG1NHLkt-1720105247831)]
对于每一个做技术的来说,学习是不能停止的,小编把2019年到目前为止Java的核心知识提炼出来了,无论你现在是处于什么阶段,如你所见,这份文档的内容无论是对于你找面试工作还是提升技术广度深度都是完美的。
不想被后浪淘汰的话,赶紧搞起来吧,高清完整版一共是888页,需要的话可以点赞+关注