Spark缓存-cache

 

一、RDD持久化

1.什么时候该使用持久化(缓存)

2. RDD cache & persist 缓存

3. RDD CheckPoint 检查点

4. cache & persist & checkpoint 的特点和区别

特点

区别

 二、cache & persist 的持久化级别及策略选择

Spark的几种持久化级别:

1.MEMORY_ONLY

2.MEMORY_AND_DISK

3.MEMORY_ONLY_SER

4.MEMORY_AND_DISK_SER

5.DISK_ONLY

6.MEMORY_ONLY_2, MEMORY_AND_DISK_2, 等等

策略选择
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/2401_83378805/article/details/147915471

好的,我分别回答您提出的四个问题: 1. Spark k-v结构转换 在Spark中,我们可以使用 `map()`、`flatMap()`、`filter()` 等操作对RDD进行转换。如果我们的数据结构是k-v结构,我们可以使用 `mapValues()`、`flatMapValues()`、`keys()`、`values()` 等操作对key和value进行单独的转换,而不影响另一部分。 例如,我们有一个k-v结构的RDD,其中key是字符串类型,value是整数类型。我们可以使用以下代码将value加1: ``` val rdd: RDD[(String, Int)] = ??? val result: RDD[(String, Int)] = rdd.mapValues(_ + 1) ``` 2. Spark 数据缓存 当我们在Spark中进行复杂计算时,通常会对中间结果进行缓存,以避免重复计算。Spark提供了两种缓存级别,即内存缓存和磁盘缓存。 我们可以使用 `cache()` 或 `persist()` 方法对RDD进行缓存。默认情况下,Spark将RDD缓存在内存中,但如果内存空间不足,则会将部分数据缓存在磁盘上。我们可以使用 `unpersist()` 方法将缓存的RDD从内存或磁盘中删除。 例如,我们有一个RDD需要进行多次计算,我们可以使用以下代码对其进行缓存: ``` val rdd: RDD[Int] = ??? rdd.cache() val result1 = rdd.reduce(_ + _) val result2 = rdd.map(_ * 2).reduce(_ + _) rdd.unpersist() ``` 3. Spark数据封装逻辑 在Spark中,我们可以使用case class来定义数据封装的逻辑。case class是Scala中的一种特殊类,它自动生成了一些方法,包括无参构造函数、getter和setter方法等。 例如,我们有一个存储用户信息的RDD,每个用户包含id、name和age三个属性,我们可以使用以下代码定义一个case class: ``` case class User(id: Int, name: String, age: Int) ``` 然后,我们可以使用 `map()` 方法将RDD中的元素转换为User对象: ``` val rdd: RDD[(Int, String, Int)] = ??? val result: RDD[User] = rdd.map { case (id, name, age) => User(id, name, age) } ``` 4. Spark日期处理机制 在Spark中,我们可以使用Java的日期时间类库或者第三方库(如Joda-Time)来处理日期时间。Spark本身提供了一些日期时间处理函数,如 `current_timestamp()`、`date_add()`、`datediff()` 等。 例如,我们有一个存储订单信息的RDD,每个订单包含id、date和price三个属性,其中date是一个字符串类型表示日期。我们可以使用以下代码将date转换为日期类型,并计算出每个订单距离今天的天数: ``` import java.time.LocalDate val rdd: RDD[(Int, String, Double)] = ??? val today = LocalDate.now() val result = rdd.map { case (id, dateStr, price) => val date = LocalDate.parse(dateStr) val days = java.time.temporal.ChronoUnit.DAYS.between(date, today) (id, days, price) } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值