本文旨在基于支持向量机(SVM)对西安地区五菱宏光二手车的价格进行分析与预测。研究过程中,采用了多种技术手段,包括Pandas数据处理、Selenium爬虫技术、sklearn库中的支持向量机算法,以及Vue前端框架和Django后端框架。首先,通过Selenium爬虫技术从相关二手车交易平台爬取五菱宏光二手车的详细信息,包括车型、里程、年份、价格等。随后,利用Pandas对爬取的数据进行清洗、整理和分析,提取出影响二手车价格的关键因素。接着,本文运用sklearn
本文旨在基于支持向量机(SVM)对西安地区五菱宏光二手车的价格进行分析与预测。研究过程中,采用了多种技术手段,包括Pandas数据处理、Selenium爬虫技术、sklearn库中的支持向量机算法,以及Vue前端框架和Django后端框架。首先,通过Selenium爬虫技术从相关二手车交易平台爬取五菱宏光二手车的详细信息,包括车型、里程、年份、价格等。随后,利用Pandas对爬取的数据进行清洗、整理和分析,提取出影响二手车价格的关键因素。接着,本文运用sklearn