论文速读|SeRA: Self-Reviewing and Alignment of Large Language Models using Implicit Reward Margins
论文信息:
简介:
该论文试图解决的问题是大型语言模型(LLMs)在通过人类反馈进行强化学习(RLHF)时存在的两个主要挑战:模型可能会从数据集中学习到错误的相关性,而不是人类偏好标签中表达的预期对齐;以及模型可能会过度拟合到那些不太可能由更新后的政策模型生成的离策略(off-policy)轨迹上的反馈。论文的主要动机是提高直接对齐算法(DAAs)的效率和效果。DAAs是一种流行的RLHF替代方法,因为它们简单、高效且稳定。然而,DAAs在训练开始前就收集了偏好,并且在训练过程中保持不变,这导致了上述问题。为了解决这些问题,论文提出了一种