NLP论文速读(CVPR 2023)|更好的文生图人类偏好对齐

论文速读|Human Preference Score: Better Aligning Text-to-Image Models with Human Preference

论文信息:

简介:

      本文背景是深度生成模型的快速发展,尤其是文本到图像模型(text-to-image models)引起了公众的极大关注。这些模型能够根据文本提示生成图像,但在实际应用中,生成的图像往往与人类偏好不一致,例如生成的人物肢体和面部表情组合不自然。现有的评估指标,如Inception Score (IS) 和 Fréchet Inception Distance (FID),并不能很好地反映人类对图像的偏好。因此,本文旨在解决现有模型与人类偏好不一致的问题。

      本文的动机在于现有的图像生成模型在实际应用中存在明显的局限性,即生成的图像与用户的实际偏好和意图不匹配。这不仅影响了用户体验,也限制了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值