NLP论文速读(NeurIPS 2024)|面向可控语言模型的选择式生成(Selective Generation for Controllable Language Models)

论文速读|Selective Generation for Controllable Language Models

论文信息:

简介:

      本文讨论了生成性语言模型(GLMs)在关键决策系统中部署时的可信度问题。GLMs因其能够生成类人语言而受到关注,但它们在生成错误信息时表现出的高置信度(即“幻觉”问题)引起了人们的担忧。为了减轻这一问题,研究者们已经尝试了多种方法,包括通过人类反馈进行微调,但这种方法成本较高。因此,本文探索了认证风险控制方法,如选择性预测和一致性预测,这些方法已经在多个监督式下游任务中被用来缓解幻觉问题。然而,由于缺乏适当的正确性度量标准,这些方法难以应用于语言生成任务。

      本文的动机在于提高GLMs在语言生成任务中的可靠性和可信度。通过控制错误发现率(FDR)并利用文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值