论文速读|Selective Generation for Controllable Language Models
论文信息:
简介:
本文讨论了生成性语言模型(GLMs)在关键决策系统中部署时的可信度问题。GLMs因其能够生成类人语言而受到关注,但它们在生成错误信息时表现出的高置信度(即“幻觉”问题)引起了人们的担忧。为了减轻这一问题,研究者们已经尝试了多种方法,包括通过人类反馈进行微调,但这种方法成本较高。因此,本文探索了认证风险控制方法,如选择性预测和一致性预测,这些方法已经在多个监督式下游任务中被用来缓解幻觉问题。然而,由于缺乏适当的正确性度量标准,这些方法难以应用于语言生成任务。
本文的动机在于提高GLMs在语言生成任务中的可靠性和可信度。通过控制错误发现率(FDR)并利用文