NLP论文速读(NeurIPS 2024)|树状结构两阶段推荐系统的泛化误差边界Generalization Error Bounds for Two-stage Recommender System

论文速读|Generalization Error Bounds for Two-stage Recommender Systems with Tree Structure

论文信息:

简介:

      本文讨论的是两阶段推荐系统(Two-stage Recommender Systems)在具有树结构的情况下的泛化误差界限。两阶段推荐系统在许多在线服务中扮演着重要角色,例如电子商务、数字流媒体和社交媒体等。这些系统需要从数百万或数十亿的选项中快速识别出与用户相关的项目,并个性化地满足大量用户的动态需求,同时响应延迟要低。两阶段推荐系统通常包括一个高效的检索器(retriever)和一个更精确但计算成本更高的排序器(ranker)。检索器从大型候选池中预先选择一小部分候选项,而排序器则对这些候选项进行细化和重新排序,然后呈现给用户。这种设计在效率和准确性之间取得了平衡,以满足现实世界场景的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值