FLUX“官方版ControlNet”来了!景深轮廓更精准控制,共四款官方工具一齐上线

“最强绘图模型”FLUX深夜更新,一口气连发四款工具!

用官方的话说,这次的更新给FLUX“带来了更多的控制方式和可操作性”。

别看官方说得简单,实际效果可是要震撼得多。

只用一个相同的轮廓,FLUX就能变幻出各式各样不同风格的画作:

或者传一张图,不用提示词就能让人物做出各种不同的动作,同时保持角色一致:

此外,还可以对现有的图像进行扩展,不断延伸画面:

具体来说,此次FLUX一共发布了这四款创意工具:

  • 编辑工具fill,可以修改画面细节或扩展画面;

  • 轮廓控制工具Canny,类似ControlNet;

  • 景深控制工具Depth,类似ControlNet;

  • 变换工具Redux,可改变人物动作、画面视角/风格。

这些工具分为dev和pro两个版本,dev版的代码和模型权重均已开放下载,pro版也通过API提供。

而且支持创作者常用的ComfyUI,能够简单整合进绘画工作流。

有网友评论说,这是一件大事,因为BFL(FLUX开发团队)终于有了自己的ControlNet。

还有人表示,这些工具解锁了(AI绘图的)可操纵性,是创意绘图的game changer。

四款工具一齐上线

首先来看fill,它可以对画面中包括文字在内的任意细节进行编辑或修复,比如图像中人物的衣着,或者加入新的元素。

此外还支持outpainting,可以将图像扩展到原始画面之外。

测评结果上,FLUX的官方工具,和第三方FLUX工具Alimama Creative体现出了优势。

同时也战胜了之前来踢馆的Ideogram,对比SD 1.5的类似功能则更是优势明显。

以文字修改任务为例,测试中对下图“Beers”部分进行了圈选,并要求修改为“Spaghetti”。

可以看出,官方Fill工具效果最为自然,Ideogram也还不错,但仔细对比会发现FLUX的文字粗细更加接近画面中的其他文字。

第三方插件则并未匹配原始字体,至于SD 1.5那更是惨不忍睹。

再来看看非文字的效果,这项任务需要在图像指定的位置(左侧)加上模糊(blurry)的小猫照片。

下图中的顺序和前面一样,可以看到除了左上角的FLUX fill工具之外,都没有满足“模糊”这个要求。

单看的话画面,第三方插件和Ideogram也都还可以,不过第三方插件“画蛇添足”地给原图的第一个木块加上了两个点。

而SD 1.5,似乎在保持着一种稳定的抽象。

第二个工具Canny,相当于一个轮廓ControlNet,通过边缘检测来精准地控制图像转换过程中的结构。

这次对比的对象包括第三方工具InstantX,以及SD 1.5和SDXL,结果FLUX.1 Canny的成绩优势明显。

当然这轮测试是直接把提取好的轮廓给模型,难度相对于让模型自己提取有一点降低。

利用这样的一个轮廓,每个模型或工具需要生成6张不同的图片(每个prompt两张)。

下图中,第一行为Flux.1 Canny(Pro)的作品,第二行为InstantX,第三第四行分别是SD 1.5和SDXL。

从左到右六张图片的prompt依次是:

1&2:a robot made of gold(一个金子做的机器人)
3&4:a robot made of brown and white clay(一个用棕色和白色黏土做的机器人)
5&6:a white robot in front of a gray background(一个白色的机器人在灰色的背景前方)

对于“金子”的部分,FLUX.1 Canny第一次画出来的效果是质感最好的,而且FLUX.1 Canny质量稳定性保持得是比较好的。

单就这个任务而言,SD 1.5的作品再次成为了最显眼包的一组。

接下来是Depth,它和Canny一样都是类似ControlNet的存在,顾名思义控制的内容是景深。

这次没有再把SD拉过来,参与对比的是两款第三方插件,还有MidJourney。

在一项测试任务中,提取之后的景深关系是这样的:

下图中,第一行对应FLUX.1 Depth(Pro),第二、三行对应Jasper和Shakker两款第三方工具,最后一行对应MidJourney。

从左到右,提示词依次是:

1&2:mountain cabin, anime style(山间小屋,动漫风格)
3&4:1950’s aesthetics(上世纪50年代的美学)

这里就不一一点评细节了,但FLUX.1 Depth的作品是最忠实于控制条件中景深关系的一组,而且也不像MidJourney那样出现了画面割裂的情况。

最后是Redux,给定输入图像,可以让FLUX在其基础之上进行“重新设计”,变换出各种不同的图片。

图像的背景、角度、画风都可以调整,同时在变换过程中保持角色一致。

如果实在没灵感,也可以只把图丢给模型,不用输入提示词,让模型自行发挥帮你转换。

相比于SD 1.5和SDXL,领先优势十分明显。

比如这张图中有只小猫正抱着一条鱼奔跑,测试过程当中没有输入提示词。

每个模型各自生成了三张图,由上到下分别是FLUX.1 Redux(Pro)、SD 1.5和SDXL。

在FLUX作品中鱼和猫的长相都和原图保持了一致,在细节动作时做出了变化,而SD 1.5生成的图像里猫和鱼都已经完全变了样子。

到了SDXL这里,好家伙,不要说风格了,猫和鱼直接陷入了“量子纠缠”,在三张图中都没有同时出现。

总之对比一圈之后发现,FLUX这次上线的四款官方工具,不管是相对第三方工具还是相对于其他模型,都十分扛打。

四款工具都是支持pro和dev两个版本(其中Canny和Depth还分完整版和LoRA版),dev版本代码和模型权重都是开放下载,pro版则要通过BFL API来使用。

另外,这四个工具还会通过五家FLUX合作的模型平台提供,这五家分别是fal(L的小写).ai、Replicate、 Together.ai、Freepik和krea.ai。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述
在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

在这里插入图片描述

### Flux ControlNet 组件概述 Flux ControlNet组件是一种增强型模块,专为改进基于Flux框架的生成模型而设计。该组件能够显著提升图像生成的质量和可控性[^2]。 #### 功能特性 - **条件控制**:ControlNet允许用户输入额外的指导信号(如边缘检测、语义分割图等),这些信号作为附加条件融入到生成过程中,从而实现精确的结果。 - **灵活性高**:支持多种类型的辅助信息源,不仅限于单一模态的数据形式;可以轻松集成至现有的Flux工作流中,无需大幅修改原有架构。 - **性能优化**:采用先进的算法和技术手段,在保持高效的同时确保输出的一致性和稳定性。 ```python from flux_controlnet import ControlNet # 初始化ControlNet实例 control_net = ControlNet() # 加载预训练权重 control_net.load_weights('path_to_pretrained_weights') # 设置条件输入 condition_input = process_additional_data() # 处理得到的条件数据 output_image = control_net.generate(image, condition_input) # 展示生成图片 display(output_image) ``` #### 使用指南 为了充分利用Flux ControlNet的功能,建议按照如下方式操作: 安装必要的依赖库之后,导入`flux_controlnet`包,并创建一个`ControlNet`类的对象。接着加载已经准备好的预训练参数文件来初始化网络权值。对于具体的任务场景,准备好相应的条件输入数据,调用`generate()`函数执行图像合成过程即可获得最终产物。 多详细的配置选项以及高级特性的说明,请参阅官方文档或访问项目主页获取最新资讯。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值