自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(36)
  • 收藏
  • 关注

原创 相机biaoding

需要先安装linux客户端(海康机器人官网),sudo dpkg -i MVS-2.1.2_x86_64_20221208.deb cd /opt/MVS/bin/ 再./MVS.sh运行,客户端启动。(3)rosbag record /left_camera/image /livox/lidar -o 包名。`\`rosbag play your_raw_bag.bag //播放CustomMsg格式的bag。

2025-05-05 19:08:52 283

原创 相机内参标定

相机内参是描述相机几何特性以及如何将三维世界中的点映射到二维图像平面的参数。它们主要用于图像的畸变校正、三维重建、以及其他计算机视觉任务中。

2025-04-15 15:08:02 318

原创 【Linux】ubuntu安装步骤

配置选项改为GPT,设备选为该u盘,点击安装。安装完成后,u盘的名字会改为ventoy,将已经下载好的iso镜像文件复制进u盘。将电脑关机/重启,插入u盘,在出现ubantu标志时按esc件,选择u盘驱动,按照步骤安装ubuntu即可。2.准备一个内存>=8GB的u盘(使用过程中u盘内的数据会被全部清空!3.制作启动盘(rufus/ventoy2disk)后缀为desktop-amd64.iso。下载windows版本,解压。1.下载ubantu镜像文件。

2025-03-21 11:00:41 219

原创 ROS学习——机器人导航仿真

2 导航与 SLAM 建图。

2024-12-16 15:05:59 268

原创 gazebo模型rviz建图

添加map(topic改成/map)、LaserScan、RobotModel。需要在文件中打开终端(这个程序没有界面,只有一串信息打印)必须在终端界面,才能键盘控制运动。m左后 q增速 z减速。u 左前 i直行 o右前。j逆 k停止 i顺。

2024-12-13 14:31:35 408

原创 先验地图--slam学习笔记

原文链接:https://blog.csdn.net/m0_74633496/article/details/141195242。后验信息是指在收集新数据之后,结合先验信息和观测数据得到的新知识或更新的假设。它是基于先验信息和当前观测数据的综合结果。先验信息指的是在收集新数据之前已有的知识或假设。这种信息可以来自之前的实验、、理论模型或专家意见。

2024-12-10 15:37:49 511

原创 粒子滤波器

粒子滤波的算法流程如下:首先确定一个t-1时刻的粒子集,且我们知道t时刻的观测数据(里程计ut,激光雷达zt),我们对于每一个粒子都进行运动学模型传播,状态传播的公式就是P(xt|xt-1,ut),公式的意思就是通过t-1时刻的粒子分布于当前t时刻里程计数据估计当前t时刻的粒子分布。然后用我们算出来的观测模型(此时刻的粒子的概率分布)进行权重评估(粒子的图匹配程度)给每个粒子评分,然后再进行重采样,丢弃无用粒子,让粒子更加符合我们的后验分布,然后返回粒子集就得到了我们t时刻的后验分布。

2024-12-10 15:23:00 1409

原创 退化环境——SLAM学习

匹配错误‌:在激光SLAM中,如果scan2map的匹配关系不正确,即传感器观测数据与地图元素的匹配关系错误,也会导致定位和建图效果不佳‌。3.‌系统稳定性差‌:在退化环境中,SLAM系统的稳定性会下降,可能出现频繁的定位丢失或地图更新错误。1.‌定位不准确‌:由于特征点缺乏或匹配关系错误,机器人的定位会变得不准确,可能导致路径规划错误。的环境中,如狭长的走廊或隧道,传感器的纹理信息不足,导致约束减少,使得定位和建图变得困难‌。或传感器观测数据与地图元素的匹配关系错误,导致定位和建图效果不佳的环境。

2024-12-06 13:34:58 526

原创 数据关联--SLAM学习笔记

激光SLAM中的数据关联是一个关键过程,它涉及到在不同时间、不同地点获取的传感器测量数据之间,以及这些测量数据与地图特征之间建立对应关系,以确定它们是否源于环境中的同一物理实体。利用词袋模型(Bag of Words)、描述子法(如Scancontext)以及深度学习方法(如OverlapNet和OverlapTransformer)等进行。通过计算描述子(Descriptors)之间的距离来进行特征点的匹配。分为:不相关(A点)、部分相关(B点)、强相关(C点)回环检测的目的是识别机器人。

2024-12-06 13:31:49 230

原创 ros报错解决

将urdf文件和xacro文件中的left_wheel改成报错提示的格式(base_l_wheel_joint),同理改right。{ }内的改成和下面child link相同的,把括号外2link删掉。解决:退出src在进行source,或者在桌面打开终端。出现./devel/setup.bash 找不到文件。

2024-12-03 11:46:20 239 1

原创 各向同性、各向异性——学习笔记

在所有方向具有相同的扩散程度(梯度)在不同方向具有不同的扩散程度(梯度)3D高斯分布:协方差矩阵是对角矩阵。3D高斯分布:协方差矩阵是对角矩阵。

2024-11-27 18:59:21 199

原创 Splatting抛雪球法——学习笔记

把数据场中的每个体素看作一个能量源,当每个体素投向图像平面时,用以体素的投影点为中心的重建核将体素的能量扩散到图像像素上。通过足迹(函数)——计算每一个体素投影的影响范围3D高斯函数——定义点或小区域像素的强度分布然后计算出其对图像的总体贡献,加以合成。

2024-11-27 18:55:46 307

原创 3D Gaussian(3D 高斯)——学习笔记

指三维空间的高斯函数,用于描述三维空间中数据的分布情况或作为滤波器进行图像处理。在数学上,它是一个正态分布函数的三维扩展,可以用来表示在三维空间中如何根据中心的远近而逐渐减弱的权重。G(x,y,z)表示该点的权重。

2024-11-27 18:46:09 1338

原创 基于MVS的三维重建算法

(用于定位)(用于三维重建)能够单独从图像中构造出高度细节化的,采集一个庞大的,用其来构建出一个用来解析图像的。MVS算法的流程图如下所示,输入为一组图像及其相应的摄像机参数:MVS算法的性能只取决于的和,所以MVS的成功很大程度上归功于底层的用来计算的。

2024-11-25 20:09:28 862

原创 机器人SLAM技术及其ROS系统应用学习

激光SLAM(Simultaneous Localization and Mapping,即同时定位与地图构建)中的数据关联是一个关键过程,它涉及到在不同时间、不同地点获取的传感器测量数据之间,以及这些测量数据与地图特征之间建立对应关系,以确定它们是否源于环境中的同一物理实体。在将数据融入到地图中前,新的测量与地图中已存在的地标的关联,在融合后,这些关联不能被修改。这样的问题是单个的错误数据关联可能诱导地图估计的发散,经常导致定位算法灾难性的失败。数据关联:也被称为一致性问题。

2024-11-22 20:02:02 1621

原创 高斯滤波器、非参数化滤波器

能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。但其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数则随着距离模板中心的增大而减小。基于样本表示法的另一个优点就是其建模随机变量的非线性变换的能力。这是最早用于非线性问题的技术之一,也是最常用的技术。相反,它将当前估计点处的非线性方程线性化,并在。问题.相比于传统的磁链观测器,EKF能够更有效地处理系统的非线性特性,并对噪声。是卡尔曼滤波器的一种扩展,专门用于处理。

2024-11-22 14:32:05 245

原创 线性系统和非线性系统

(1)根据系统的输入和输出关系是否具有线性来定义:满足叠加原理的系统具有线性特性。即若对两个激励x1(n)和x2(n),有T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)],式中a、b为任意常数。不满足上述关系的为非线性系统。(2)根据组成系统的元件特性来定义:由线性元件和独立电源组成的系统。

2024-11-20 17:52:37 694

原创 卡尔曼滤波

实现过程:使用上一次的最优结果预测当前的值,同时使用观测值修正当前值,得到最优结果。滤波:将里面存在的噪声滤掉,让曲线变得更加平滑,使信号更趋于真实值。假设真实数据为5m,在测量过程中,存在噪声。卡尔曼滤波:估计x( )+观测x( )上的输入-控制模型(作用矩阵)线性:1)叠加性 2)齐次性。理想状态:信号x1+噪声x0。使用系统:线性高斯系统。高斯:噪声满足正态分布。宏观意义:滤波即加权。3.卡尔曼滤波的使用。

2024-11-20 17:32:34 210

转载 三维重建SfM算法——运动结构恢复

需要注意的是,由于 SfM 算法是一种迭代的算法,所以在每个步骤中都需要不断地调整参数和优化结果,以获得更加准确和稳定的结果。同样的,如果在描述一个特征之前,将图像变换到同一个仿射尺度或者投影尺度上,那么就可以实现仿射不变性和投影不变性。简单来说,它指的是图像的某些特征或者处理算法不受图像灰度级别变化的影响,能够在不同亮度条件下保持一致性。等算法进行特征匹配。需要注意的是,在匹配的过程中,需要使用一些鲁棒的技巧来避免匹配误差的影响。所谓的旋转不变性和尺度不变性的原理,就是我们在描述一个特征之前,将。

2024-11-20 15:14:47 827

原创 卷积神经网络(CNN)

(Convolutional Neural Networks, CNN)是一类包含且具有的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有,能够按其阶层结构对输入信息进行(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”

2024-11-20 14:28:38 715

原创 NeRF——神经辐射场

全称Neural Radiance Field,即神经辐射场。。它要解决的问题就是给定一些拍摄的图,如何下的图. 不同于传统的三维重建方法把场景表示为等显式的表达,它独辟蹊径,将场景建模成一个连续的存储在中,只需输入的图像训练得到一个,根据这个模型可以出任意视角下的清晰的照片。通俗来讲就是构造一个,其输入是某个视角下发射的光线的位置o,方向d以及对应的坐标(x,y,z),送入神经辐射场Fθ得到体密度和颜色,最后再通过体渲染得到最终的图像。

2024-11-20 12:22:29 473

原创 三维重建学习

可以分为使用拍摄的事件流作为输入的三维重建方法,以及使用拍摄的图像作为输入的三维重建方法。是一种不同于标准相机的,它的并不是直接的像素值,而是异步地测量每个,并输出编码这些变化的时间、位置和符号的事件流。从事件相机的定义来看,事件就是事件相机输出的情况。当场景中的物体运动或者光照改变从而导致大量的像素发生改变时,事件相机就会产生一系列事件,并以的方式输出。这些事件具有三个要素,分别表示事件发生的的像素、像素或者。因此目前主流的三维重建方法仍然使用标准相机输出的图像作为算法的输入。

2024-11-19 19:19:39 799

原创 SLAM学习——地图类型

一般根据地图的用途决定建立什么样的地图,地图的用途一般有定位、导航、避障、3D重建和交互。地图的类型分为稀疏地图、半稠密地图、稠密地图、栅格地图、八叉树地图、TSDF地图和拓扑地图。4)栅格地图:cartographer建立的栅格地图如下图所示,每个栅格都有的占用概率值,该值高于一个阈值可认为是占用的,否则认为是free的。1)稀疏地图:稀疏地图一般由点特征、线特征等组成,ORB-SLAM2建立的稀疏点地图如下图。2)半稠密:半稠密地图主要是有纹理的点有深度值,可进行3D重建,相对稀疏点的点要多很多。

2024-11-15 14:22:34 626

原创 图像特征--sift算法

SIFT在尺度空间中所提取的图像局部特征点。SIFT特征点提取较为方便,对于图像的缩放等变换比较鲁棒,得到了广泛的应用。形状特征:形状特征的表达必须以对图像中物体或区域的分割为基础。两种经典的算法是SIFT和HOG。还是深度学习算法,对于图像而言,都是在寻找更好的从原始图像中提取具有较强表示能力的图像特征。④计算方向构造128维的特征向量 ,计算每个特征点的向量,每个向量是128维。图像特征一般包括几何特征,颜色特征和纹理特征几个方面。②搜索尺度空间中的关键点 ,关键点就是角点或者拐点。

2024-11-14 16:00:35 255

原创 SLAM学习——鲁棒性

鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持其它某些性能的特性。“稳定性”,是指控制系统在使它偏离平衡状态的扰动作用消失后,返回原来平衡状态的能力。

2024-11-12 18:44:42 717

原创 神经网络与深度学习-学习笔记

为了提高机器学习系统的准确率,就需要将输入信息转换为有效的特征,或者更一般性地称为表示有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就可以叫作表示学习深度学习(Deep Learning,DL)就是从数据中学习一个 “深度模型”,是机器学习的一个子问题主要目的:从数据中自动学习到有效的特征表示(通过多层的特征转换,把原始数据变成更高层次、更抽象的表示)深度学习需要解决的关键问题是贡献度分配问题。

2024-11-12 11:56:15 664

原创 ROS学习—常见命令

清除无用节点,启动乌龟节点,然后 ctrl + c 关闭,该节点并没被彻底清除,可以使用 cleanup 清除节点。rosnode 是用于获取节点信息的命令。测试到节点的连接状态。列出指定设备上的节点。

2024-11-11 15:53:47 230

原创 通信机制中代码问题

该消息包含人的信息:姓名、身高、年龄等。按照固定格式创建 msg 文件在功能包 plumbing_pub_sub 下新建 msg 文件夹,并在该文件夹下新建 Person.msg 文件// Person.msg 内容//string name就是定义一个string类型的name变量uint16 age//UInt16表示16位(2字节)无符号整数,UInt32表示32位(4字节)无符号整数//float64是默认的双精度浮点数据类型,float32表示单精度浮点数据类型。编辑配置文件。

2024-11-11 14:51:42 1504

原创 视觉SLAM十四讲(十一)回环检测

但是,回环检测能够给出除了相邻帧的一些更加久远的约束。相比之下,召回率低一些,顶多有部分的回环没有被检测到,地图可能受一些累积误差的影响,然而仅需一两次回环就可以完全消除他们。所以在回环检测算法时,我们更倾向于把参数设置得更严格,或者在检测之后再加上回环验证的步骤。这种做法摆脱了累计误差,使回环检测模块成为SLAM系统中一个相对独立的模块,能够有效地在不同场景下工作,成为视觉SLAM中主流的做法。但是由于累计误差的存在,我们往往也无法正确地发现“运动到之前的某个位置附近”这个事实,回环检测也无从谈起。

2024-11-09 17:43:07 481

原创 科研学习工具

3.body的小标题和conclusion找核心观点和研究结论。sciencedirect、SPIS、科研通、ariv。2.introduction找框架和论点。五、公式识别:simple tex。1.abstract了解大致内容。4.总结复述文章的框架和论点。第一章综述 & 优秀。

2024-11-09 11:52:42 172

原创 SLAM学习笔记——后端优化

为什么需要后端优化?前端里程计会造成累计误差。(起点和终点不重合)SLAM后端优化的主要方法包括的方法和的方法。

2024-11-08 11:46:38 307

原创 视觉slam十四讲(七)

同时估计相机运动和点的投影,(不用求取角点,可以是随机的选点)不用计算关键点和描述子。(仅是比较像素间亮度的差异,速度提升,但重复性不强,分布不均匀,且不具有方向信息)特征匹配:解决了SLAM中的数据关联问题,即确定当前看到的路标与之前看到的路标之间的对应关系。的情况广泛存在,且长期以来没有得到有效解决,称为视觉SLAM中制约性能提升的一大瓶颈。的地方(白墙等),该场景下特征点数量减少,可能找不到足够的匹配点来计算相机运动。可以用在特征缺失的场合。的信息估计出粗略的相机运动,给后端提供较好的初始值。

2024-11-07 22:07:36 306

原创 视觉slam十四讲——传感器

分为单线2D和多线3D,一般来说,线数越高,激光器的数量就越多,能捕捉到的物体细节越丰富,分辨率越高。要求光照环境相对稳定、不适于告诉运动场景、无法应对纹理缺失、单目丢失深度信息、双目计算量大。能够捕捉剧烈变化的运动、效果稳定(光照变化、运动模糊、纹理缺失、结构退化)贵、重、结构退化(长廊、隧道、空旷)、受天气影响(雨、雪、雾、风沙)3.1 微机电系统MEMS(加速度计、陀螺仪、磁力计)没有累计误差、直接测量旋转平移、便宜。2.1 分类:旋转式、固态式。2、双目:基于基线的测距。3、深度:TOF/结构光。

2024-11-05 14:19:45 209

原创 视觉SLAM十四讲

SLAM 是 Simultaneous Localization and Mapping 的缩写,中文译作“他是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。如果这里的主要为,那就称为“

2024-11-04 19:11:31 436

原创 3D Gaussian Splatting (学习笔记)

NeRF 是一种利用稀疏视角图像重建场景的 3 维表示的隐式学习技术,通过对场景的光照和颜色信息进行编码,实现高质量的 3 维重建和视角合成效果。,这为场景优化和新颖的视图合成提供了显著的加速。3D GS 技术的出现解决了 NeRF 技术训练和渲染速度慢的缺点,它使用 3D 高斯基元作为实时神经渲染的基元,可在不牺牲图像质量的情况下显着提高渲染速度。计算完图像损失之后,梯度会沿着数据流反向传播,对 3D 高斯基元的参数进行优化,而重建不充分的区域往往有着更大的梯度,是需要优化的重点区域。

2024-11-01 11:22:57 1163

原创 入门学习笔记

C++是在C语言的基础上发展而来的,因此C++几乎支持C语言的所有功能。C语言没有类和面向对象的概念,我们所能做的就只是过程式编程,将指令和数据组织成一块一块的子过程,也就是函数。为特点的基于对象的程序设计,还可以进行以继承和多态为特点的面向对象的程序设计。在使用C++进行程序设计的时候,我们不考虑如何把算法和功能组织成函数,而是考虑如何将程序中的物件抽象为类,并且定义类之间的关系和互动。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体变得活了起来,传感器是人类五官的延长。

2024-09-14 16:04:01 305

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除