标题:深入探索 PyTorch:torch.nn.Parameter
与 torch.Tensor
的奥秘
在深度学习的世界里,PyTorch 以其灵活性和易用性成为了众多研究者和开发者的首选框架。然而,即使是经验丰富的 PyTorch 用户,也可能对 torch.nn.Parameter
和 torch.Tensor
之间的区别感到困惑。本文将深入剖析这两个概念,通过详细的解释和实际的代码示例,揭示它们之间的联系与区别。
一、PyTorch 简介
PyTorch 是一个基于Torch库的开源机器学习库,广泛用于计算机视觉和自然语言处理领域的研究和生产。它提供了强大的GPU加速的张量计算能力,以及构建深度学习模型的动态计算图。
二、张量(Tensor)
在 PyTorch 中,torch.Tensor
是最基本的数据结构,用于表示多维数组。Tensor 可以包含数值数据,并且可以进行各种数学运算,如加法、乘法等。
import torch
# 创建一个张量
x = torch.tensor([1, 2, 3])
print(x)