Amanda_ABAP_Python
码龄4年
关注
提问 私信
  • 博客:250,382
    社区:1
    250,383
    总访问量
  • 101
    原创
  • 1,866,751
    排名
  • 44
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-10-19
博客简介:

Amanda_python的博客

查看详细资料
个人成就
  • 获得165次点赞
  • 内容获得29次评论
  • 获得788次收藏
  • 代码片获得2,542次分享
创作历程
  • 21篇
    2021年
  • 80篇
    2020年
成就勋章
TA的专栏
  • python
    101篇
  • 人工智能
    75篇
  • 数据分析
    66篇
兴趣领域 设置
  • 人工智能
    机器学习自然语言处理nlp数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《机器学习模型一:线性回归》

想重新梳理一下知识框架,所以想先从模型入手整理。线性回归1.1理论描述线性回归用来确定自变量和因变量之间相互依赖的定量关系的一种数理统计分析方法。知道了自变量和因变量之间的线性关系,就可以对连续值进行预测。在回归分析中,若只有一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这属于一元线性回归分析,表达式可以写成 y=ax+b ,当给定参数a和b时,输入自变量x就可以输出得到因变量y。但是在实际运用时,因变量的变化往往受两个或两个以上的自变量的影响,且因变量和自变量之间呈线性关系,这种回归分
原创
发布博客 2021.08.26 ·
465 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

XGBoost的参数详解与代码示例

文章目录XGBoost的参数类型一、一般参数二、弱评估器参数三、任务参数四、代码块XGBoost的参数类型XGBoost有三大类型的参数:1.一般参数(general parameters):用于集成算法本身;2. 弱评估器参数(booster parameters):与弱评估器训练相关的参数;3. 任务参数(Learning task parameters):应用中的其他过程;下面主要使用sklearnAPI来讲解这些参数一、一般参数n_estimators 集成中弱评估器的数量..
原创
发布博客 2021.03.02 ·
13643 阅读 ·
18 点赞 ·
0 评论 ·
93 收藏

XGBoost的两种使用方式(1. sklearnAPI的库 2. XGBoost的原生库)及其区别

# 导入库文件和数据集from sklearn.datasets import load_boston from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error,accuracy_score,precision_score, recall_score from sklearn.model_selection import train_test_split import math boston_data
原创
发布博客 2021.03.02 ·
4724 阅读 ·
4 点赞 ·
0 评论 ·
20 收藏

随机森林调参详解----实例:随机森林在乳腺癌数据上的调参

n_estimators :森林中树木的数量,即基评估器(学习器)的数量默认是100,n_estimators变大,模型更复杂, n_estimators变大,模型更简单;不影响单个模型的复杂度 max_depth :树的最大深度,超过最大深度的树枝都会被剪掉默认最大深度,即最高复杂度,如果减小max_depth,就 会向复杂度降低的方向调整,向图像的左边移动 min_samples_leaf :一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分
原创
发布博客 2021.02.27 ·
1486 阅读 ·
4 点赞 ·
2 评论 ·
20 收藏

有放回抽样试验去验证定理

一、背景介绍在 bagging 模型的构建中会集成多个子模型。对于每个子模型的构建,都需要分 别为其进行数据或特征抽样。对每个子模型的抽样,称为一轮,n 个子模型抽样,表示 n 轮。关于什么是有放回抽样,目前存在两种说法:说法一:一轮抽样结束后,将所有被抽取的数据一次全部放回,以此进行下一轮抽样;说法二:在一轮抽样期间,每次抽完一个数据,就立马将该数据放回。如果一轮要抽样 n 个数据,那么就会有 n 次数据的放回动作。二、实验1.试验目的验证以上两种说法,哪一种是正确的2.试验内容抽样既可
原创
发布博客 2021.02.26 ·
1464 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

集成学习与随机森林---理论与代码结合详细讲解

// An highlighted blockvar foo = 'bar';// An highlighted blockvar foo = 'bar';// An highlighted blockvar foo = 'bar';// An highlighted blockvar foo = 'bar';
原创
发布博客 2021.02.27 ·
443 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

为什么必须在神经网络种引入非线性

如果神经网络中没有引入非线性层,那么神经网络就变成了线性层的堆叠。而多层线性网络的堆叠本质上还是一个线性层,我们以两层线性网络的堆叠为例:我们用 ????(????)表示第一层线性网络,????(????)表示第二层线性网络,则两层网络的堆叠表示为:我们令:那么原来的表达式就变为:所以ℎ(????) 还是一个线性函数。而我们知道线性函数的表现力是有限的,它只能表示特征与目标值之间比较简单的关系,相反带有非线性层的神经网络被证明可以表示任何函数。所以为了使得网络设计发挥作用,并且提高网络
原创
发布博客 2021.02.24 ·
1780 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

loc函数、iloc函数、df.drop()函数的用法

1.loc函数、iloc函数loc函数:通过行索引 “Index” 中的具体值来取行数据(如取"Index"为"A"的行)iloc函数:通过行号来取行数据(如取第二行的数据)df = pd.DataFrame(np.arange(20).reshape(5,4),index=list('abcde'),columns=['A', 'B', 'C', 'D'])######### 提取行数据#############取索引为'a'的行df.loc['a']# 输出:A 0B
原创
发布博客 2021.02.21 ·
11707 阅读 ·
12 点赞 ·
1 评论 ·
86 收藏

命令行mysql -u root -p打开数据库SQL失败?

通过cmd命令行mysql -u root -p打开数据库失败?这是因为数据库没有启动:1.在搜索框搜索“服务”,并打开“服务”2.找到数据库,并右击启动,显示正在运行说明已经启动了这时候再去cmd打开即可,成功啦!...
原创
发布博客 2021.02.12 ·
1594 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

SQL数据库查询练习

一.成绩表的建表语句及插入数据语句# -- 成绩表 SCcreate table SC(SId varchar(10),CId varchar(10),score decimal(18,1));insert into SC values('01' , '01' , 80);insert into SC values('01' , '02' , 90);insert into SC values('01' , '03' , 99);insert into SC values('02' , '01'
原创
发布博客 2021.02.07 ·
297 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Can‘t find model ‘de‘,Can‘t find model ‘en‘

在jupyter运行下面的命令的时候,显示错误报错如下:在网上找了一下,发现是没有安装’de’和’en’,当然在这的基础上你要确保spacy是已经安装的(如果没有安装,可以通过pip install spacy安装spacy)安装下面的命令行安装’de’和’en’python -m spacy download enpython -m spacy download de但是依然报错:因此可以选择在在官网的models模块里面下载英语(en)和德语(de)的数据集对应的压缩包,官网连接为
原创
发布博客 2021.02.04 ·
1274 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

torchvision.datasets.CIFAR10()和torch.utils.data.DataLoader详细介绍

import torchvision trainset = torchvision.datasets.CIFAR10(root = data_path, train = True, download = True, transform=transform)'''
原创
发布博客 2021.01.30 ·
2914 阅读 ·
10 点赞 ·
0 评论 ·
47 收藏

安装xgboost库

1.先选择对应的whl文件https://www.lfd.uci.edu/~gohlke/pythonlibs/#xgboost其中cp对应的是python版本,我的电脑是64位的win10系统,python是3.7.6版本,所以我是选择:xgboost-1.3.1-cp37-cp37m-win_amd64.whl2.将下载的whl文件放到一个地方(放哪里随便你自己,但是安装的时候要加上路径),我是直接放到了F盘下,因为我需要加上F盘的路径F:pip install F:\xgboost-1.3.1
原创
发布博客 2021.01.19 ·
1159 阅读 ·
2 点赞 ·
1 评论 ·
3 收藏

x = x.view(x.size(0), -1) --------------改变维度、展平

pytorch中的view()函数就是用来改变tensor的形状的,将多维度的Tensor展平成一维,例如将2行3列的tensor变为1行6列,其中-1表示会自适应的调整剩余的维度1.首先用代码解释x.size(0)里面的0是干嘛的import torch a = torch.randn(2,3)print(a)print(a.size())print(a.size(0))输出:tensor([[-0.7595, -0.2599, -1.3692], [ 0.8177
原创
发布博客 2021.01.11 ·
1746 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

pytorch里面的nn库:torch.nn.modules、torch.nn.functional、torch.nn.parameter、torch.nn.Sequential

torch.nn是专门为神经网络设计的模块化接口torch.nn构建与autograd之上,可以用来定义和运行神经网络介绍一下四大库:torch.nn.modules、torch.nn.functional、torch.nn.parameter、torch.nn.Sequentialtorch.nn.modules************torch.nn.modules*************torch.nn.MSELosstorch.nn.CrossEntropyLoss torch.nn
原创
发布博客 2021.01.09 ·
1383 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

python中的max()与min()的用法介绍

A是一个 m 行 n 列的矩阵:A.min(0) : 返回A每一列最小值组成的一维数组;A.min(1):返回A每一行最小值组成的一维数组;A.max(0):返回A每一列最大值组成的一维数组;A.max(1):返回A每一行最大值组成的一维数组;这里的0表示行,1表示列我利用tensor写的张量,里面还可以显示每一行每一列输出的最大最小的索引A = torch.rand(3,4)print(A)print(A.min(0))print(A.min(1))print(A.max(0))p
原创
发布博客 2021.01.08 ·
3351 阅读 ·
6 点赞 ·
0 评论 ·
6 收藏

Pytorch 的 Tensor 常用函数与操作

Tensor的算术运算import torcha = torch.Tensor([1, 2])b = torch.Tensor([3, 4])### 加法运算c = a + bc = torch.add(a, b)c = a.add(b)print(a)c = a.add_(b) print(a)### 减法运算c = a - bc = torch.sub(a, b)c = a.sub(b)print(c)print(a)c = a.sub_(b) print(c)
原创
发布博客 2021.01.08 ·
1495 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

几种激活函数的详解及代码实现:sigmoid()、softmax()、tanh()、relu()、leaky_relu()

import numpy as npimport matplotlib.pyplot as plt%matplotlib inline1.sigmoid()函数# Sigmoid函数常被用作神经网络的激活函数,将变量映射到0,1之间# 除了输出层是一个二元分类问题外,基本不用Sigmoid函数def sigmoid(x): y = 1/(1+np.exp(-x)) return y曲线绘制:X = np.arange(-5, 5, 0.1)y = sigmoid(X)
原创
发布博客 2021.01.02 ·
4406 阅读 ·
5 点赞 ·
0 评论 ·
34 收藏

numpy.frombuffer()详细介绍

'''frombuffer将data以流的形式读入转化成ndarray对象numpy.frombuffer(buffer, dtype=float, count=-1, offset=0)buffer:缓冲区,它表示暴露缓冲区接口的对象。dtype:代表返回的数据类型数组的数据类型。默认值为0。count:代表返回的ndarray的长度。默认值为-1。offset:偏移量,代表读取的起始位置。默认值为0。'''#data是字符串的时候,Python3默认str是Unicode类型,所以
原创
发布博客 2021.01.02 ·
31726 阅读 ·
9 点赞 ·
1 评论 ·
62 收藏

XGBoost VS GBDT (二者的区别)

①XGBoost损失函数是误差部分是二阶泰勒展开,GBDT 是一阶泰勒展开。因此损失函数近似的更精准。②XGBoost目标函数中添加了正则项(L1、L2正则项),可以有效的防止过拟合③XGBoost可以自定义目标函数objective,因此更加灵活④XGBoost可以自定义评估指标eval_metric⑤XGBoost除了可以进行样本抽样,还实现了特征抽样四个随机抽样特征的参数中(subsample–控制生成每棵树的随机抽样样本比例、colsample_bytree–每次生成树时,随机抽样特征的比
原创
发布博客 2020.12.28 ·
835 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多