====
-
execute
提交没有返回值,不能判断是否执行成功。只能提交一个Runnable的对象 -
submit
会返回一个Future
对象,通过Future的get()
方法来获取返回值,submit提交线程可以吃掉线程中产生的异常
,达到线程复用
。当get()执行结果时异常才会抛出。原因是通过submit提交的线程,当发生异常时,会将异常保存,待future.get()
时才会抛出。
关闭线程池
=====
-
shutdown()
:不再继续接收新的任务,执行完成已有任务后关闭 -
shutdownNow()
:直接关闭,若果有任务尝试停止
线程池出现异常会发生什么?
=============
-
线程出现异常,线程会退出,并重新创建新的线程执行队列里任务,不能复用线程
-
当业务代码的异常捕获了,线程就可以复用
-
使用ThreadFactory的UncaughtExceptionHandler保证线程的所有异常都能捕获(包括业务的异常),兜底的.如果提交方式用execute,不能复用线程
-
setUncaughtExceptionHandler+submit :可以吃掉异常并复用线程(是吃掉,不报错)
-
setUncaughtExceptionHandler+submit+future.get() :可以获取到异常并复用线程
最佳实践
-
提交线程的
业务异常
用try catch
处理,保证线程不会异常退出 -
业务之外的异常
我们不可预见的,创建线程池设置ThreadFactory的UncaughtExceptionHandler
可以对未捕获的异常做保底处理,通过submit
提交任务,可以吃掉异常并复用线程;想要捕获异常这时用future.get()
注:关于异常处理的相关案例,已在源码中,这里不做展示
实战1:结合CompletableFuture使用线程池
============================
-
CompletableFuture,结合了Future的优点,提供了非常强大的Future的扩展功能,可以帮助我们简化异步编程的复杂性,提供了函数式编程的能力,可以通过回调的方式处理计算结果,并且提供了转换和组合CompletableFuture的方法。
-
CompletableFuture可以传入自定义线程池,否则使用自己默认的线程池,我们习惯做法是自定义线程池,控制整个项目的线程数量,不使用自定义的线程池,做到可控可调
步骤1:声明一个线程池bean
application.properties
//尽量做到每个业务使用自己配置的线程池
service1.thread.coreSize=10
service1.thread.maxSize=100
service1.thread.keepAliveTime=10
复制代码
线程池属性类
/**
-
@Description: 线程池属性
-
@Author: jianweil
-
@date: 2021/12/9 10:44
*/
@ConfigurationProperties(prefix = “service1.thread”)
@Data
public class ThreadPoolConfigProperties {
private Integer coreSize;
private Integer maxSize;
private Integer keepAliveTime;
}
复制代码
线程池配置类
/**
- @Description: 线程池配置类:根据不同业务定义不同的线程池配置
**/
@EnableConfigurationProperties(ThreadPoolConfigProperties.class)
@Configuration
public class MyService1ThreadConfig {
@Bean
public ThreadPoolExecutor threadPoolExecutor(ThreadPoolConfigProperties pool) {
return new ThreadPoolExecutor(
pool.getCoreSize(),
pool.getMaxSize(),
pool.getKeepAliveTime(),
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(100000),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy()
);
}
}
复制代码
步骤2:使用
注:本文所有源码已分享github
/**
-
@Description: 测试CompletableFuture
-
@Author: jianweil
-
@date: 2021/12/9 10:50
*/
@SpringBootTest
public class CompletableFutureTest {
@Autowired
private ThreadPoolExecutor threadPoolExecutor;
/***
-
无返回值
-
runAsync
*/
@Test
public void main1() {
System.out.println(“main…start…”);
CompletableFuture.runAsync(() -> {
System.out.println(“当前线程:” + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println(“运行结果:” + i);
}, threadPoolExecutor);
System.out.println(“main…end…”);
}
}
复制代码
实战2:结合@Async使用线程池
=================
- 在现实的互联网项目开发中,针对高并发的请求,一般的做法是高并发接口单独线程池隔离处理。可能为某一高并发的接口单独一个线程池
方式1:默认线程池
-
使用@Async注解,在默认情况下用的是SimpleAsyncTaskExecutor线程池,该线程池不是真正意义上的线程池
-
使用此线程池无法实现线程重用,每次调用都会新建一条线程。若系统中不断的创建线程,最终会导致系统占用内存过高,引发
OutOfMemoryError
错误
步骤1:自定义一个能查看线程池参数的类
-
不清楚线程池当时的情况,有多少线程在执行,多少在队列中等待呢?
-
创建了一个ThreadPoolTaskExecutor的子类,在每次提交线程任务的时候都会将当前线程池的运行状况打印出来
public class VisiableThreadPoolTaskExecutor extends ThreadPoolTaskExecutor {
private static final Logger logger = LoggerFactory.getLogger(VisiableThreadPoolTaskExecutor.class);
private void showThreadPoolInfo(String prefix) {
ThreadPoolExecutor threadPoolExecutor = getThreadPoolExecutor();
if (null == threadPoolExecutor) {
return;
}
logger.info(“{}, {},taskCount [{}], completedTaskCount [{}], activeCount [{}], queueSize [{}]”,
this.getThreadNamePrefix(),
prefix,
threadPoolExecutor.getTaskCount(),
threadPoolExecutor.getCompletedTaskCount(),
threadPoolExecutor.getActiveCount(),
threadPoolExecutor.getQueue().size());
}
@Override
public void execute(Runnable task) {
showThreadPoolInfo(“1. do execute”);
super.execute(task);
}
@Override
public void execute(Runnable task, long startTimeout) {
showThreadPoolInfo(“2. do execute”);
super.execute(task, startTimeout);
}
@Override
public Future<?> submit(Runnable task) {
showThreadPoolInfo(“1. do submit”);
return super.submit(task);
}
@Override
public Future submit(Callable task) {
showThreadPoolInfo(“2. do submit”);
return super.submit(task);
}
@Override
public ListenableFuture<?> submitListenable(Runnable task) {
showThreadPoolInfo(“1. do submitListenable”);
return super.submitListenable(task);
}
@Override
public ListenableFuture submitListenable(Callable task) {
showThreadPoolInfo(“2. do submitListenable”);
return super.submitListenable(task);
}
}
复制代码
步骤2:实现AsyncConfigurer类
-
要配置默认的线程池,要实现
AsyncConfigurer
类的两个方法 -
不需要打印运行状况的可以使用ThreadPoolTaskExecutor类构建线程池
/**
-
@Description: 注解@async配置
-
@Author: jianweil
-
@date: 2021/12/9 11:52
*/
@Slf4j
@EnableAsync
@Configuration
public class AsyncThreadConfig implements AsyncConfigurer {
/**
-
定义@Async默认的线程池
-
ThreadPoolTaskExecutor不是完全被IOC容器管理的bean,可以在方法上加上@Bean注解交给容器管理,这样可以将taskExecutor.initialize()方法调用去掉,容器会自动调用
-
@return
*/
@Override
public Executor getAsyncExecutor() {
int processors = Runtime.getRuntime().availableProcessors();
//常用的执行器
//ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
//可以查看线程池参数的自定义执行器
ThreadPoolTaskExecutor taskExecutor = new VisiableThreadPoolTaskExecutor();
//核心线程数
taskExecutor.setCorePoolSize(1);
taskExecutor.setMaxPoolSize(2);
//线程队列最大线程数,默认:50
taskExecutor.setQueueCapacity(50);
//线程名称前缀
taskExecutor.setThreadNamePrefix(“default-ljw-”);
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//执行初始化(重要)
taskExecutor.initialize();
return taskExecutor;
}
/**
-
异步方法执行的过程中抛出的异常捕获
-
@return
*/
@Override
public AsyncUncaughtExceptionHandler getAsyncUncaughtExceptionHandler() {
return (ex, method, params) ->
log.error(“线程池执行任务发送未知错误,执行方法:{}”, method.getName(), ex.getMessage());
}
}
复制代码
步骤3: 使用
- 直接添加注解@Async即可使用到配置的
默认线程池
/**
- 默认线程池
*/
@Async
public void defaultThread() throws Exception {
long start = System.currentTimeMillis();
Thread.sleep(random.nextInt(1000));
long end = System.currentTimeMillis();
int i = 1 / 0;
log.info(“使用默认线程池,耗时:” + (end - start) + “毫秒”);
}
复制代码
方式2:指定线程池
- 由于业务需要,根据业务不同需要不同的线程池
步骤1:声明一个线程池bean
/**
-
@Description: 注解@async配置
-
@Author: jianweil
-
@date: 2021/12/9 11:52
*/
@Slf4j
@EnableAsync
@Configuration
public class AsyncThreadConfig implements AsyncConfigurer {
@Bean(“service2Executor”)
public Executor service2Executor() {
//Java虚拟机可用的处理器数
int processors = Runtime.getRuntime().availableProcessors();
//定义线程池
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
//可以查看线程池参数的自定义执行器
//ThreadPoolTaskExecutor taskExecutor = new VisiableThreadPoolTaskExecutor();
//核心线程数
taskExecutor.setCorePoolSize(processors);
taskExecutor.setMaxPoolSize(100);
//线程队列最大线程数,默认:100
taskExecutor.setQueueCapacity(100);
//线程名称前缀
taskExecutor.setThreadNamePrefix(“my-ljw-”);
//线程池中线程最大空闲时间,默认:60,单位:秒
taskExecutor.setKeepAliveSeconds(60);
//核心线程是否允许超时,默认:false
taskExecutor.setAllowCoreThreadTimeOut(false);
//IOC容器关闭时是否阻塞等待剩余的任务执行完成,默认:false(必须设置setAwaitTerminationSeconds)
taskExecutor.setWaitForTasksToCompleteOnShutdown(false);
//阻塞IOC容器关闭的时间,默认:10秒(必须设置setWaitForTasksToCompleteOnShutdown)
taskExecutor.setAwaitTerminationSeconds(10);
/**
-
拒绝策略,默认是AbortPolicy
-
AbortPolicy:丢弃任务并抛出RejectedExecutionException异常
-
DiscardPolicy:丢弃任务但不抛出异常
-
DiscardOldestPolicy:丢弃最旧的处理程序,然后重试,如果执行器关闭,这时丢弃任务
-
CallerRunsPolicy:执行器执行任务失败,则在策略回调方法中执行任务,如果执行器关闭,这时丢弃任务
*/
taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
return taskExecutor;
}
}
复制代码
步骤2: 使用
- @Async(“service2Executor”)注解指定使用的线程池名称
/**
-
指定线程池service2Executor
-
@throws Exception
*/
@Async(“service2Executor”)
public void service2Executor() throws Exception {
long start = System.currentTimeMillis();
Thread.sleep(random.nextInt(1000));
long end = System.currentTimeMillis();
log.info(“使用线程池service2Executor,耗时:” + (end - start) + “毫秒”);
}
复制代码
注:异步任务返回值为void,不能获取的返回值的
计算线程数量
======
适合框架类
例如netty,dubbo这种底层通讯框架通常会参考进行设置
-
IO 密集型(较多): 通常设置为2n+1,其中n为CPU核数
-
CPU 密集型(较少): 通常设置为 n+1
实际情况往往复杂的多,并不会按照这个进行设置
IO密集型类型进阶算法
-
对于IO密集型类型的应用:线程数 = CPU核心数/(1-阻塞系数)
-
引入了阻塞系数的概念,一般为0.8~0.9之间,
在我们的业务开发中,基本上都是IO密集型,因为往往都会去操作数据库,访问redis,es等存储型组件,涉及到磁盘IO,网络IO。
一个4C8G的机器上部署了一个MQ消费者,在RocketMQ的实现中,消费端也是用一个线程池来消费线程的,那这个线程数要怎么设置呢?
-
如果按照 2n + 1 的公式,线程数设置为 9个,但在我们实践过程中发现如果增大线程数量,会显著提高消息的处理能力,说明 2n + 1 对于业务场景来说,并不太合适。
-
如果套用 线程数 = CPU核心数/(1-阻塞系数) 阻塞系数取 0.8 ,线程数为20
-
如果我们发现数据库的操作耗时比较多,此时可以继续提高阻塞系数,从而增大线程数量。
那我们怎么判断需要增加更多线程呢?
-
其实可以用jstack命令查看一下进程的线程栈,如果发现线程池中大部分线程都处于等待获取任务,则说明线程够用
-
如果大部分线程都处于运行状态,可以继续适当调高线程数量。
线程数规划的公式(推荐)
《Java 并发编程实战》介绍了一个线程数计算的公式:
如果希望程序跑到CPU的目标利用率,需要的线程数公式为:
如果我期望目标利用率为90%(多核90),那么需要的线程数为:
把公式变个形,还可以通过线程数来计算CPU利用率:
虽然公式很好,但在真实的程序中,一般很难获得准确的等待时间和计算时间,因
为程序很复杂,不只是“计算” 。一段代码中会有很多的内存读写,计算,I/O 等复合操作,精确的获取这两个指标很难,所以光靠公式计算线程数过于理想化。
真实程序中的线程数是没有固定答案,先设定预期,比如我期望的CPU利用率在多少,负载在多少,GC频率多少之类的指标后,再通过测试不断的调整到一个合理的线程数
获取CPU核心数
- Java 获取CPU核心数
Runtime.getRuntime().availableProcessors()//获取逻辑核心数,如6核心12线程,那么返回的是12
复制代码
- Linux 获取CPU核心数