前言
恕我直言,就这几天,各大厂都在裁员,什么开发测试运维都裁,只有大模型是急招人。
你说你不知道大模型是什么?那可太对了,你不知道说明别人也不知道,就是要趁只有业内部分人知道的时候入局!
尤其是干程序员的,绝对要抓住这个机会,我不是危言耸听,经历过Java、Python、大数据的,都应该知道,每个新技术,风口就那么多年,技术迭代的很快。
一、本篇文章适合什么人群?
本篇文章比较适合以下几类朋友:
1.适合想要了解AI到底是怎么回事的小白和入门朋友;
2.适合有意愿转型从事AI相关的产品和岗位的朋友,包括产品经理,运营人员;
3.适合已经初步了解AI,但是想要进阶学习AI,减少AI认知焦虑的朋友;
4.适合有兴趣在AI领域创业搞事情的朋友。
温馨提示:文末有福利
二、 认识大模型
大模型,很多人第一次听的话,感觉很高大上,对吧?
因为它听起来比较抽象,但我想大家一定知道模型这个词语,具体来说,模型通常指的是对于某个实际问题或客观事物、规律进行抽象后的一种形式化表达方式。它可以用于描述、解释或预测现实世界中的现象。模型的种类繁多,包括但不限于数学模型、思维模型、结构模型、方法模型、分析模型和管理模型等。
而大模型比模型要复杂的多,大模型通常是指具有数百万或数十亿个参数的深度神经网络模型,这种模型经过专门的训练过程,能够对大规模数据进行复杂的处理和任务处理。
相比之下,模型通常规模较小,参数较少,主要用于解决一些简单的任务。
**打个比方,它就像是一个非常聪明的大脑。**就像我们从小到大,不断学习新知识一样,大模型也是这样成长的。科学家们让它"读"了海量的文字、看了无数的图片、听了各种各样的声音。经过这样的"学习",它积累了丰富的知识和经验。想象一下,你有一个朋友,他懂得特别多,无论你问什么问题,他都能给你一个不错的答案。
举个例子,假设你想知道怎么做一道美味的红烧肉。你可以问大模型:“红烧肉怎么做最好吃?”大模型会告诉你详细的步骤:先把五花肉切成方块,然后冷水下锅煮开去血水,再用小火慢炖,加入酱油、糖和各种调料…它甚至还能告诉你一些小技巧,比如加点可乐会让肉更香甜软嫩。
这就是大模型的优势所在,只要是世界上存在的知识,而且它学习过,就可以给你答案。
三、 小白如何学习大模型?
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
● 大模型 AI 能干什么?
● 大模型是怎样获得「智能」的?
● 用好 AI 的核心心法
● 大模型应用业务架构
● 大模型应用技术架构
● 代码示例:向 GPT-3.5 灌入新知识
● 提示工程的意义和核心思想
● Prompt 典型构成
● 指令调优方法论
● 思维链和思维树
● Prompt 攻击和防范
● …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
● 为什么要做 RAG
● 搭建一个简单的 ChatPDF
● 检索的基础概念
● 什么是向量表示(Embeddings)
● 向量数据库与向量检索
● 基于向量检索的 RAG
● 搭建 RAG 系统的扩展知识
● 混合检索与 RAG-Fusion 简介
● 向量模型本地部署
● …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
● 为什么要做 RAG
● 什么是模型
● 什么是模型训练
● 求解器 & 损失函数简介
● 小实验2:手写一个简单的神经网络并训练它
● 什么是训练/预训练/微调/轻量化微调
● Transformer结构简介
● 轻量化微调
● 实验数据集的构建
● …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
● 硬件选型
● 带你了解全球大模型
● 使用国产大模型服务
● 搭建 OpenAI 代理
● 热身:基于阿里云 PAI 部署 Stable Diffusion
● 在本地计算机运行大模型
● 大模型的私有化部署
● 基于 vLLM 部署大模型
● 案例:如何优雅地在阿里云私有部署开源大模型
● 部署一套开源 LLM 项目
● 内容安全
● 互联网信息服务算法备案
● …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
四、 大模型就业方向
总结一下,大致可以分为 4 类:
● 做数据的(大模型数据工程师,爬虫/清洗/ETL/Data Engine/Pipeline)
● 做平台的(大模型平台工程师,分布式训练/大模型集群/工程基建)
● 做应用的(大模型算法工程师,搜/广/推/对话机器人/AIGC)
● 做部署的(大模型部署工程师,推理加速/跨平台/端智能/嵌入式)
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。