根据博帕尔事故报道,12月3日凌晨00时15分,MIC储罐内压力便迅速升高,有人在工艺区内发现了泄漏的MIC,但操作人员对少量的泄漏已经司空见惯。
00时45分,储罐超压、安全阀起跳,大量的MIC泄漏到周围环境中,但因为事故储罐的压力计早已出现故障,操作人员不再相信压力数值,也未采取任何核实措施。
而企业的警报,也是时常失灵,误报已成为常态,周边的居民也已习惯了这种误报。当泄漏发生2个小时后,企业拉响警报时,熟睡中的居民已没人在意。
事故发生后,应急反应系统没有有效运转,当地医院不知道泄漏的是什么气体,对泄漏气体可能造成的后果及急救措施也毫不了解。
就这样,最后一道防线层层失灵、失守,导致了这起人类历史上最严重的工业事故的发生……
应急管理作为企业安全生产的最后一道防线,必须“拿得起来、冲得上去”,随时处于战备状态,才能有效阻止事故进一步扩大。但40年过去了,国内还是有大量的事故案例在时时告诫我们,应急处置环节的失守终究会酿成让人难以承受的苦酒。
案例一
2023年,鲁西双氧水新材料科技有限公司“5·1”重大爆炸着火事故。事故发生后,事故企业先期应急处置混乱无序、效率低下。双氧水公司制定的应急预案针对性和可操作性不强,未辨识出抽油作业存在的配制釜超温、超压引发爆炸事故风险,未专门针对配制釜等危险性较大的生产设施编制现场处置方案。
案例二
2019年,宁波锐奇日用品有限公司“9·29”重大火灾事故。企业未组织开展消防安全疏散逃生演练,未组织制定并实施安全生产教育和培训计划,员工的消防应急能力不足,面对初期火灾,没有用灭火器灭火,而采用纸板扑打、覆盖塑料桶等方法灭火,持续4分多钟,灭火未成功,火势渐大并烧熔塑料桶,引燃周边易燃可燃物,酿成大祸,造成19人死亡。
案例三
2018年,河北张家口盛华化工公司“11·28”重大爆燃事故。公司多数人员不了解氯乙烯气柜泄漏的应急救援预案,对环境改变带来的安全风险认识不够,意识淡薄,管控能力差。应急预案如同虚设,应急演练流于形式,操作人员对装置异常工况处置不当,泄漏发生后,企业应对不及时、不科学,没有相应的应急响应能力。
案例四
2013年,山东省青岛市“11•22”中石化东黄输油管道泄漏爆炸特别重大事故。青岛站、潍坊输油处、中石化管道分公司对泄漏原油数量未按应急预案要求进行研判,对事故风险评估出现严重错误,没有及时下达启动应急预案的指令;未按要求及时全面报告泄漏量、泄漏油品等信息,存在漏报问题;现场处置人员没有对泄漏区域实施有效警戒和围挡;抢修现场未进行可燃气体检测,盲目动用非防爆设备进行作业,严重违规违章。
案例五
2003年,重庆开县“12·23”特大井喷事故。造成243人死亡。该企业的管理人员、操作人员平时都对违章习以为常,发现设备缺陷不上报、不整改。井喷发生后,应急处置不当,不果断点火,以致大量含有高浓度硫化氢的天然气喷出扩散,造成事故扩大。事故导致243人因硫化氢中毒死亡、2142人因硫化氢中毒住院治疗、65000人被紧急疏散安置。
目前,多数危化品企业在应急管理方面虽然做了大量工作,但是大多数系统性偏弱,实用性不强,应急能力处于比较低的水平。笔者建议:
一
要强化应急预案的编制与管理
(一)
**
科学合理地编制应急预案
**
危化品企业应建立专门的应急预案编制小组,开展生产安全事故风险评估、应急资源调查,并重点评估企业的应急救援能力,在此基础上组织编制针对性和操作性强的应急预案。
一是
基于风险编写预案
结合装置现有风险清单和同行业典型案例等资料,认真辨识评估可能发生的事故风险。例如,鲁西化工应针对抽油作业存在的配制釜超温、超压引发爆炸事故的风险,编制配制釜等生产设施现场处置方案。
二是
基于实战突出处置
组织机构、处置程序等内容贴近实际进行简化,在满足法规要求前提下,尽量将原有的厚本预案进行“瘦身”处理。
三是
基于图表直观表达
针对泄漏、火灾爆炸、人员中毒、异常工况等具体风险和场景编写的应急处置内容表单化,力求要素条理清晰,便于查阅使用。
四是
基于快速规范程序
按照应急处置“135”原则开展应急管理,制定基层单位现场处置方案和应急处置卡范本,引导各单位统一初期应急响应流程,健全基层完善基层岗位应急职责、现场处置方案,有效提升基层应急能力。
(二)
**
常态化演练与动态修订
**
应急预案制定后不能束之高阁,要定期组织演练,通过演练检验预案的科学性、合理性和可操作性,发现问题及时调整。同时,随着企业生产工艺的改进、设备的更新、人员的变动等情况,对应急预案要进行动态修订,确保预案始终与企业实际紧密结合,在事故发生时才能真正发挥指导作用。
一是
**
真练不演
**
**企业“只演不练”的现象十分突出,演练方案不科学,缺乏真实性,演练多是按照既定的预案开展,演练内容、演练时间、演练地点都是事先确定的,没有真实事故发生时的突发性和不确定性,一切都是“规定动作”,把演练变成了“演戏”****,**没有发挥应急演练检验预案、锻炼队伍的作用。演练人员在思想上不够重视,只是为了应付上级检查,没有把演练当成实战对待,演练的效果甚微。
二是
**
突出“急”态
**
企业要开展“双盲”应急演练,不让参演单位和人员知道会开展应急演练,更不知道具体演练时间、地点和内容,重在一个“急”字,练在一个“忙”字。
二
要加强应急救援队伍建设
(一)
**
打造专业救援队伍
**
博帕尔事故发生后,当地政府和企业缺乏有效的应急救援机制和专业的救援队伍。危化品企业要么自身组建专业的应急救援队伍,要么与专业救援机构签订长期合作协议。救援队伍成员要经过严格的选拔和专业培训,培训内容包括危险化学品知识、应急救援技能、防护装备使用、现场急救等方面。
要确保救援人员熟悉各类危化品事故的特点和处置方法,具备在复杂、危险环境下开展救援工作的能力,如:在有毒气体泄漏环境中能正确穿戴防护装备,并实施救援行动。
此外,考虑到各危化品企业生产车间用工总量受限,事故发生后本车间当班人员主要忙于关阀断料等工艺操作,当事故影响范围较大时,需要邻近装置人员协助实施外围警戒、人员救护、灭火等工作,各危化品企业应通过加强基层单位义务应急队建设,满足联防增援需求。
(二)
**
强化协同作战能力
**
博帕尔事故表明,单靠企业自身救援力量往往难以应对重大事故。因此,企业要与当地政府的消防、医疗、环保等外部救援力量建立紧密的应急联动机制,定期开展联合演练。通过联合演练增进彼此了解,明确在事故发生时各自的职责和协同配合的方式,实现信息共享、资源整合,形成强大的救援合力,提高整体救援效率。
三
**
要优化信息管理与沟通机制
**
(一)
**
建立完善信息系统
**
博帕尔事故发生后,工厂内部各部门之间以及工厂与外界之间的信息沟通存在严重问题。当博帕尔警察局局长赶到工厂询问泄漏情况和解毒方法时,工厂忙于转移工人,无人理会,导致信息传递延误,增加了应急救援的难度。医务人员不知道如何抢救中毒患者,对毒气的性质和危害认识不足,无法提供有效的治疗措施。
危化品企业要建立涵盖全面信息的应急管理信息系统,包括企业基本情况、生产工艺、危险化学品详细资料、风险评估结果、重大危险源分布、应急预案、应急资源清单等内容。确保在事故发生时,相关人员能迅速从该系统中获取准确、有用的信息,为应急决策提供有力支撑。例如,能快速查到某种危化品泄漏后的最佳处置方案及所需的应急资源。
(二)
**
畅通沟通渠道
**
博帕尔事故中,企业与政府、公众之间信息沟通不畅导致了恐慌。事故发生后,工厂开始向社区发出毒气警报,但几分钟后警报停止。工厂的报警经常响起各种原因引起的警笛,一周要响20~30次,以至无法区分真正的危险报警。****为避免麻烦,公司把警笛设置为报警,****5分钟后自动关闭。****政府在事故发生初期,无法准确掌握事故的情况,向公众发布的信息不及时、不准确,甚至存在误导。例如,最初告知居民气体没有毒性,让居民待在家里不要动,导致不少人在家中活活被毒气熏死。
危化品企业在事故发生时要及时、准确地向政府相关部门、周边企业、社区居民、员工及其家属等通报事故情况,包括事故的性质、规模、影响范围、当前采取的应急处置措施等。建议设置专门的咨询热线或利用社交媒体等平台及时回应公众关切,保持信息透明,避免因信息不透明引发社会恐慌。
四
要深化安全培训与教育
(一)
**
全员覆盖培训
**
博帕尔事故中,员工对危险化学品危险性认识不足,缺乏应急处置知识和技能。工人安全培训周期从6个月降到了15天,导致员工缺乏应对突发事件的知识和技能。
危化品企业要对全体员工进行常态化的安全培训和教育,培训内容涵盖法律法规、安全制度、操作规程、危险化学品特性、应急处置方法、逃生技巧等方面。通过培训使员工深刻认识自身岗位的风险,熟悉应对各类事故的方法,确保在事故发生时能正确采取行动,保护自己并协助救援。
(二)
**
提升管理层应急能力
**
企业管理层的应急意识和决策能力对事故应对至关重要。要对管理层开展针对性的应急管理培训,提升其对突发事件的敏感度、应急指挥能力和决策水平,使管理层在事故发生时能迅速作出正确决策,统筹安排应急救援工作,确保救援行动有序开展。
五
**
要规范应急物资储备与管理
**
(一)
**
储备充足物资
**
博帕尔事故发生后,现场极度缺乏能够有效防护毒气侵害的呼吸防护装备,导致救援人员在进入现场时面临巨大的安全风险,无法及时展开救援工作。同时,工厂和当地医院也没有储备足够的解毒药剂和相关的医疗物资,使得大量中毒人员无法得到及时有效的治疗。
危化品企业要根据风险评估结果和应急预案要求,储备充足的应急物资,如:防护用品、堵漏工具、灭火器材、急救药品等。同时确保在事故发生时,这些物资能迅速投入使用,满足应急救援的需要,避免因物资短缺影响救援效果。
(二)
**
严格物资管理
**
博帕尔工厂没有配备有效的气体泄漏检测和报警装置,导致MIC储存罐温度和压力上升的初期,无法及时发出警报,错过了最佳的应急处理时机。直到储存罐压力过大、毒气泄漏后才被发现,此时已经无法阻止大规模的泄漏。
企业应建立规范的应急物资管理制度,对应急物资的采购、储存、维护、使用等环节进行严格管理。定期对物资进行检查和维护,确保其处于良好状态。对过期或失效的物资要及时更换,对消耗的物资要及时补充,同时建立详细的物资台账,做到账物相符,便于物资的调度和管理。
六
**
要强化应急响应与救援评估
**
当前,受限空间事故应急“一人遇险、多人遇难”的现象时有发生。****面对同事、亲友遇难,出于人之常情,人们会义无反顾地去进行施救,但往往因为对存在的安全风险不清楚,在没有做好个人防护的情况下施救,出现多人伤亡的悲剧。
企业应加强应急培训演练,增强风险意识,保障科学施救。在事故应急救援终止后,应分析总结事故应急救援行动和应急处置过程中的成功经验和不足,形成应急救援工作总结。
七
**
要加强对事故和未遂事故的根源分析
**
在博帕尔事故发生之前,该工厂发生过多次小规模的MIC泄漏事故,工人们都有过眼睛不适的经历(MIC损伤眼睛、肺部和神经系统等)。但是,这些前兆并没有引起工厂管理层的足够重视。经验表明,后果轻微的事故和未遂事故是重大事故的前兆,需要重视工厂所发生的哪怕是不起眼的小事故,仔细分析和消除它们的根源。
企业还应关注外部事件信息的收集工作,认真吸取同行业、同类企业、同类装置的事件教训,防范发生重复事故事件。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。