零基础Coze搭建AI智能体,王奶奶也能学会的保姆级教程(新手必备)

零基础Coze搭建AI智能体,王奶奶也能学会的保姆级教程(新手必备)

注:本期开始与大家一同学习 Coze 智能体,本篇讲解一些 Coze 智能体的一些基本概念与搭建一个智能体,新手必备,会持续更新该系列。

1,什么是 Coze

Coze是新一代 AI 应用开发平台,定位是零代码或低代码的AI开发平台。

用户不需要编程基础,就能快速搭建出基于大模型的各类 AI项目,满足个性化需求、实现商业价值,比如聊天机器人、客服助手、私人助手、文案生成器等等。

可以通过 API 或 SDK 将 AI 应用集成到你的业务系统中。

国内版网址:www.coze.cn
国外版网址:www.coze.com(需科学上网)

Image

2,为什么选择Coze

Coze 的功能与优势

拖拽式工作流:通过可视化界面拼接功能模块(如LLM调用、逻辑判断、API接入),5分钟可搭建客服机器人、文案生成器等应用

*多Agent协作***:**在单 Agent 模式下处理复杂任务时,您必须编写非常详细和冗长的提示词,而且您可能需要添加各种插件和工作流等,这增加了调试智能体的复杂性。调试时任何一处细节改动,都有可能影响到智能体的整体功能,实际处理用户任务时,处理结果可能与预期效果有较大出入。

为了解决上述问题,扣子提供了多 Agent 模式,该模式下您可以为智能体添加多个 Agent,并连接、配置各个 Agent 节点,通过多节点之间的分工协作来高效解决复杂的用户任务!

200+官方插件:涵盖天气查询、新闻搜索、图像生成等,例如接入“链接读取”当你需要获取网页、pdf、抖音视频内容时,使用此工具。可以获取url链接下的标题和内容。

**自定义插件:**扣子平台也支持创建自定义插件。你可以将已有的 API 通过参数配置的方式快速创建一个插件让 Bot 调用。

持久化的记忆能力:可持久记住用户对话的重要参数或内容,实现越用越懂你的智能推荐。

定时任务:Coze支持为Bot创建定时任务。并且定时的制定无需编写任何代码,只需要直接输入任务描述,Bot就会按时执行该任务。比如,你可以让Bot:每天早上9:00给你推荐 AI 的新闻。

丰富的数据源:Coze提供了简单易用的知识库功能来管理和存储数据,支持 Bot与你自己的数据进行交互。无论是内容量巨大的本地文件还是某个网站的实时信息,都可以上传到知识库中。这样,Bot 就可以使用知识库中的内容回答问题了。

Image

Coze的应用场景

COZE(扣子)作为字节跳动的低代码AI开发平台,其应用场景已覆盖多个行业领域。以下是其核心应 用场景及典型案例分析:

智能客服系统

24小时在线应答:处理80%的常见问题(如订单查询、退换货政策),支持多轮对话和情绪识别

集成能力:一键发布至微信、飞书等平台,无缝对接企业现有系统

内容创作与营销

文案创作:自动生成小红书图文、抖音短视频脚本,支持风格定制(如幽默/专业)

案例:自媒体博主使用“热点追踪+文案生成”工作流,提升日更效率

个性化学习助手

语言教学:英语外教机器人通过语音交互纠正发音,提升确率

案例:家长上传绘本PDF,生成互动式故事讲解机器人,提升儿童阅读兴趣

知识库问答系统

专业领域支持:上传法律条文、技术手册,打造法律顾问或IT运维助手

实时数据整合:抓取最新行业报告,生成定制化分析(如教育政策解读)

Image

3,怎么用Coze搭建智能体

本篇文章将更新入门的使用,接下来一段时间内,我会持续发关于 Coze 搭建智能体的文章,如有兴趣,可以持续关注!

首先我们进入官网,然后注册 Coze,注册这里就不教了。

Image

注册成功后,进入工作空间,选择项目开发,再点击创建智能体。

Image

点击图标可以上传,或点击右边那个图案,可以让 AI 自动生成图标。

Image

人设与回复逻辑:设置提示词,其提示词支持 Jinja 和 Markdown 语法,同时下方也提供一些提示词模板,帮助你更高效地编写提示词,从而提高大模型的输出质量。

插件:添加后智能体能够调用外部 API ,比如搜索信息,浏览网页。

工作流:通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。

触发器:建立一些定时任务,比如现在社群中的每日 AI 资讯。

知识:可以理解为知识库的意思。

Image

在填写完相应提示词后,就可以在右侧窗口进行调试了,如果你不会写提示词,可以使用官方提供的模板,或者让 AI 进行提示词的生成。

最后再点击发布,就创建好一个智能体啦!我们可以返回到项目空间进行查看。

Image

好的本期教程就到这里了,会持续更新 Coze 系列的内容。

大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,却苦于没有大模型入门学习资料?

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

### 使用Coze框架搭建DeepSeek智能体 #### 创建项目结构 为了使用Coze框架构建DeepSeek智能体,首先需要创建合适的工作目录结构。这有助于保持项目的整洁有序并便于后续维护。 ```bash mkdir coze_deepseek_project cd coze_deepseek_project ``` #### 初始化环境配置 安装必要的依赖库来支持Coze和DeepSeek之间的交互操作。通常情况下,这些工具包会通过Python pip命令来进行管理: ```bash pip install coze-sdk deepseek-api requests ``` #### 编写初始化脚本 编写一个名为`init.py`的文件用于设置基本参数以及连接到DeepSeek服务端接口。此部分代码负责定义API密钥和其他认证信息以便于安全访问云端资源[^1]。 ```python import os from dotenv import load_dotenv load_dotenv() DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY') COZE_AGENT_ID = "your-agent-id" ``` #### 设计Agent逻辑模块 接下来,在同一目录下建立一个新的Python源码文件叫做`agent_logic.py`。该文件包含了具体业务场景下的处理流程,例如接收输入数据、调用外部模型预测结果等核心功能实现[^2]。 ```python class AgentLogic: def __init__(self, agent_id): self.agent_id = agent_id def process_input(self, input_data): # 处理接收到的数据... pass def call_model_api(self, processed_data): headers = { 'Authorization': f'Bearer {os.environ["DEEPSEEK_API_KEY"]}', 'Content-Type': 'application/json' } response = requests.post( url='https://api.deepseek.com/v1/models/predict', json=processed_data, headers=headers ) return response.json() ``` #### 构建多智能体协作机制 利用Coze提供的通信协议设计多个独立运行但又相互配合工作的智能实体。每个个体都可以执行特定的任务并将中间成果共享给其他成员共同完成最终目标。 ```python from multiprocessing import Process, Queue def run_agent(agent_queue, result_queue): while True: task = agent_queue.get() if not task: break logic_instance = AgentLogic(COZE_AGENT_ID) output = logic_instance.process_input(task['input']) prediction_result = logic_instance.call_model_api(output) result_queue.put(prediction_result) if __name__ == '__main__': num_agents = 5 tasks_to_do = [...] # 待分配的任务列表 results_collected = [] agents_queues = [Queue() for _ in range(num_agents)] results_queue = Queue() processes = [] for i in range(num_agents): p = Process(target=run_agent, args=(agents_queues[i], results_queue)) p.start() processes.append(p) try: for idx, item in enumerate(tasks_to_do): agents_queues[idx % num_agents].put(item) for q in agents_queues: q.put(None) # 发送结束信号 for proc in processes: proc.join() while not results_queue.empty(): res = results_queue.get() results_collected.append(res) except KeyboardInterrupt: print("\nTerminating...") for q in agents_queues: q.put(None) for proc in processes: proc.terminate() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值