机器学习和人工智能之间的区别与联系
机器学习和人工智能之间的区别
人工智能(AI)和机器学习(ML)是更广泛的计算机科学领域中两个密切相关但又不同的领域。人工智能是一门专注于创建智能机器的学科,这些机器可以执行通常需要人类智能的任务,例如视觉感知、语音识别、决策和自然语言处理。它涉及开发可以根据输入数据进行推理、学习和决策的算法和系统。
另一方面,机器学习 (ML) 是人工智能的一个子领域,涉及教导机器从数据中学习,而无需明确编程。机器学习算法可以识别数据的模式和趋势,并使用它们来做出预测和决策。机器学习用于构建预测模型、对数据进行分类和识别模式,是许多人工智能应用程序的重要工具。
人工智能和机器学习的发展有潜力改变各个行业并在很多方面改善人们的生活。人工智能系统可用于诊断疾病、检测欺诈、分析财务数据和优化制造流程。机器学习算法可以帮助个性化内容和服务,改善客户体验,甚至帮助解决世界上一些最紧迫的环境挑战。
尽管人工智能和机器学习有很多好处,但人们也担心与这些技术相关的潜在风险和挑战。其中包括工作岗位流失的风险、对人类自主和决策的影响,以及人工智能和机器学习以有害方式使用的可能性。因此,以负责任和合乎道德的方式开发和使用人工智能和机器学习,并解决与这些技术相关的潜在风险和挑战非常重要。
人工智能(AI)
人工智能 包括“人工智能”和“人工智能”两个词。人工是指人类制造的东西或非自然的东西,智能是指理解或思考的能力。人们有一种误解,认为人工智能是一个系统,但其实它不是一个系统。系统中实现了人工智能。人工智能可以有很多定义,其中一个定义可以是“它是一门研究如何训练计算机,以便计算机能够做目前人类可以做得更好的事情”。因此,我们希望将人类所拥有的所有能力添加到机器中,这是一种智能。
机器学习(ML)
机器学习是机器无需明确编程即可自行学习的学习。它是人工智能的一种应用,为系统提供自动学习和从经验中改进的能力。在这里,我们可以通过集成该程序的输入和输出来生成一个程序。机器学习的简单定义之一是“如果学习者在该类任务中的表现(按 P 衡量)随着经验而提高,则机器学习可以从经验 E 中学习某类任务 T 和绩效指标 P。”
人工智能 (AI) 和机器学习 (ML) 之间的主要区别:
人工智能 | 机器学习 |
---|---|
1956 年“人工智能”一词最初由 John McCarthy 使用,他也是第一届 AI 会议的主持人。 | “机器学习”一词于 1952 年由人工智能和计算机游戏领域的先驱 IBM 计算机科学家 Arthur Samuel 首次使用。 |
AI代表人工智能,其中智能被定义为 获取和应用知识的能力。 | ML代表机器学习,定义为 知识或技能的获取 |
AI 是一个更广泛的家族,由 ML 和 DL 作为其组件。 | 机器学习是人工智能的子集。 |
目的是增加成功的机会而不是准确性。 | 目的是提高准确率,但并不关心;成功 |
人工智能的目标是开发一种能够 执行各种复杂工作的智能系统。决策 | 机器学习试图构建 只能完成其接受过训练的工作的机器。 |
它作为一个可以智能工作的计算机程序来工作。 | 在这里,任务系统机器获取数据并从数据中学习。 |
目标是模拟自然智能来解决复杂问题。 | 目标是从某些任务的数据中学习,以最大限度地提高 该任务的性能。 |
人工智能有着非常广泛 |