自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2148)
  • 收藏
  • 关注

原创 为什么你的LLM搞不定复杂任务?一文掌握ReAct+Reflexion核心技术

文章介绍了ReAct和Reflexion两种提升大语言模型能力的提示技术框架。ReAct通过"推理-行动-观察"循环使模型与外部环境交互,减少幻觉;Reflexion在此基础上增加评估和反思机制,形成完整学习闭环,使模型能从错误中学习。两者结合既保证即时响应能力,又具备长期优化潜力,显著提升了LLM在知识密集型、决策型和编程任务中的表现,是构建下一代智能系统的核心技术。

2026-01-04 10:59:19 721

原创 【收藏级干货】RAG技术实战:让大模型理解企业知识,AI落地必备技能

RAG技术是让大模型理解企业私有知识的关键解决方案,通过检索增强生成实现基于真实数据的准确回答。文章详细介绍了RAG技术的演进历程、系统架构设计、检索质量优化方法、生产部署最佳实践,以及未来发展趋势。从基础RAG到智能RAG,再到多模态、实时学习和联邦RAG,为企业构建可信任的AI应用提供了完整的技术路径。

2026-01-04 10:49:05 703

原创 智能体(Agent)设计模式完全指南,小白也能掌握的大模型系统工程

智能体正从对话工具升级为业务执行系统,真正决定其上限的不是模型大小,而是设计模式。本文系统介绍并行化、链式执行、路由、反思、规划等核心设计模式,以及工具集成、安全保障等工程实践,帮助开发者构建稳定、可控、可规模化的智能体系统,实现从"能聊"到"能跑"的关键转变。

2026-01-04 10:45:20 568

原创 【必收藏】文本分块:RAG系统的核心技术,小白也能掌握的大模型优化指南

本文详细介绍了文本分块技术在RAG系统中的关键作用,包括其定义、必要性及多种分块策略(固定尺寸、语义分块、智能体驱动等)。文章强调文本分块直接影响检索准确性和系统性能,需遵循语义连贯性、上下文完整性和计算效率三大原则。不存在适用于所有场景的"万能方法",最佳分块策略应根据内容类型、查询复杂度和模型能力灵活选择,并通过持续迭代优化系统表现。

2026-01-04 10:28:27 549

原创 从零开始学大模型:一文读懂LSTM如何解决神经网络记忆难题(收藏必学)

本文详细解释了从RNN到LSTM的发展历程,揭示了传统神经网络缺乏记忆的"金鱼脑"缺陷,以及RNN因梯度消失无法处理长序列的问题。LSTM通过三个门控机制实现选择性记忆,解决了长期依赖问题,成为NLP领域里程碑,但也存在计算复杂和顺序处理的局限。理解LSTM是掌握现代深度学习序列建模的基础。

2026-01-04 10:25:55 471

原创 【必收藏】Agentic AI架构详解:超越LLM+API的七层工程系统设计指南

本文详解Agentic AI七层架构设计,从UI接口到基础模型,全面剖析如何构建超越LLM+API的智能Agent系统。各层包含明确的职责边界和可观测性设计,确保系统能可靠执行复杂任务,是企业级AI落地的完整技术指南。

2026-01-04 10:19:51 628

原创 大模型多Agent协作技术详解:从入门到精通,开发者必收藏学习指南

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-02 09:15:00 749

原创 【收藏必学】智能体工作流设计模式:让AI从“能对话“进化为“会决策“

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-02 09:00:00 978

原创 深度解析大模型上下文处理技术:从基础到进阶(小白也能学会,建议收藏)

本文全面介绍大模型中的上下文处理技术,包括长上下文处理、多模态整合与结构化数据处理方法。详细探讨了通过架构创新、位置插值与上下文扩展解决长文本难题的技术路径,以及多模态信息融合和知识图谱等结构化数据整合方案。同时阐述了上下文自我优化与适应机制,包括基础自我优化框架、元学习与自主进化等前沿技术,为开发者提供系统性的技术指导与实践参考。---

2026-01-02 08:45:00 1291

原创 【程序员必看】大模型学习资源汇总:零基础到进阶,全套资料免费分享

本文提供了一套完整的AI大模型学习资源,包含从基础理论到实战应用的五大模块,适合应届生、零基础转型者和传统开发者。资源涵盖视频教程、PDF书籍、行业报告、面试题等,帮助学习者系统掌握大模型技术。资料通过vx二维码免费获取,助力从零入门到实战进阶,抓住AI大模型发展机遇。

2026-01-02 08:30:00 1139

原创 【必学收藏】大模型提示词编写与优化全攻略:从入门到精通

要编写并优化大模型提示词,关键在于**清晰明确地定义任务目标、提供充足的上下文信息、设定具体的输出期望(如格式、风格、角色扮演),并通过迭代优化逐步改进提示效果**。针对特定任务(如写作、编程、数据分析),需结合任务特性设计提示词,例如分步引导、提供关键参数、明确问题与期望等。本教程将详细阐述这些原则与技巧,并提供大量实战案例。

2026-01-02 08:00:00 703

原创 【建议收藏】掌握AI大模型四阶技术:从提示工程到预训练的学习指南与职业机遇

本文系统梳理AI发展四阶段及大模型四阶技术(提示工程、AI智能体、大模型微调、预训练技术),详解各技术特点、适用人群与应用场景。随着AI技术演进,跨领域整合、创造性思考等技能持续升值,催生AI架构师、垂直领域专家等高薪职业。文章提供系统学习路径,帮助读者结合自身情况,抓住人工智能时代发展机遇。

2026-01-01 09:00:00 553

原创 【收藏】AI Agent开发核心指南:提示词、工作流与RAG知识库实战

文章系统阐述了在Agentic AI技术背景下构建可靠、高效AI Agent应用的方法。核心竞争力已转向提示词工程、工作流设计和知识库构建三大领域。详细介绍了Agent核心架构、提示词设计技巧、使用DSL描述工作流的优势、RAG与关系型数据库的应用,以及AI安全防护和项目确定方法,为开发者提供了从理论到实践的完整指南。

2026-01-01 08:45:00 1333

原创 收藏!从Prompt到Context:大模型Agent架构全解析,小白也能看懂的智能体进化指南

本文系统拆解了大模型驱动的Agent架构,以"Prompt→Context"为核心逻辑,从智能起点到记忆载体,再到感知、决策、执行的完整闭环,详解Agent如何从单次响应升级为持续智能决策。同时分析Context容量、质量等关键技术挑战,展望多模态融合、Auto-Prompting等未来方向,为理解Agent智能演化提供全景视角。

2026-01-01 08:45:00 839

原创 收藏!一文读懂大模型高效架构:线性、稀疏、混合技术全攻略

本文系统梳理了大模型高效架构的七大方向:线性序列建模(降低计算复杂度)、稀疏注意力(选择性交互)、高效全注意力(优化实现)、稀疏混合专家(条件计算)、混合架构(多技术融合)、扩散模型(并行生成)及跨模态应用。这些创新架构解决了Transformer二次复杂度瓶颈,为长上下文和多模态任务提供支持。未来研究将聚焦算法-硬件协同设计和自适应架构,推动大模型向更高效、更通用的方向发展。

2026-01-01 08:30:00 715

原创 【建议收藏】多模态RAG技术原理与大模型学习路径,小白也能掌握

多模态RAG技术整合多模态数据,实现跨模态检索与生成。核心技术包括多模态编码器、检索系统和生成模型,流程涵盖数据预处理、查询处理和生成响应。面临模态对齐等挑战,未来将向高效表示和实时处理发展。文章还提供大模型学习资源,帮助技术人从零入门到实战掌握AI大模型技术。

2026-01-01 08:00:00 866

原创 AI Agent开发平台选择指南:6大主流框架对比,小白必备收藏

本文详细解析了六大主流AI智能体开发平台(Dify、Coze、n8n、AutoGen、LangChain、CrewAI)的特点、优势和适用场景,帮助开发者根据业务需求精准选型。文章从平台定位、核心功能、适合人群等角度进行全面对比,提供零代码、企业级、多Agent协作等不同场景的解决方案,并预测智能体平台将向功能融合、多Agent协作、私有化部署等方向发展。

2025-12-31 08:45:00 546

原创 值得收藏!大模型(LLM)学习路线图:从基础理论到实战应用,小白也能轻松上手

本文系统介绍LLM学习课程,分为三大模块:LLM基础(数学、Python、神经网络和NLP)、LLM科学家(模型构建与优化)和LLM工程师(应用开发与部署)。课程涵盖从理论基础到实战应用的完整学习路径,包括向量存储、RAG、代理系统等前沿技术,适合不同背景的学习者入门并精通大模型技术,实现AI时代的能力提升。

2025-12-31 08:45:00 1234

原创 收藏必备!AI大模型入门到精通:基础知识全解析

文章系统介绍了AI大模型所需的跨学科知识体系,包括数学基础、计算机科学、机器学习、深度学习、自然语言处理等核心领域,详细阐述了Transformer架构、预训练与微调、分布式训练等关键技术,并探讨了伦理安全问题。同时提供了实践工具和学习路径,帮助读者从零开始构建大模型知识框架,为深入学习和实践打下坚实基础。

2025-12-31 08:00:00 680

原创 【值得收藏】vLLM高性能推理引擎完全指南:PagedAttention优化+23倍吞吐提升,大模型部署从入门到实战

vLLM是伯克利开发的高性能大语言模型推理部署库,采用PagedAttention和持续批处理技术,内存效率高,吞吐量提升达23倍。支持多种量化格式和并行计算,兼容HuggingFace和OpenAI API。文章详细介绍了与Ollama、LM Studio的对比、环境配置、项目初始化、模型下载与测试流程,以及如何搭建类OpenAI服务。适合生产环境部署和高并发场景,但对硬件要求较高。---

2025-12-31 07:30:00 1559

原创 大模型入门必学:掌握核心参数与两大范式,建议收藏反复研读

本文深入解析大模型入门知识,重点介绍核心参数messages(对话记忆机制)与tools(工具选择能力),以及RAG与ReAct两大应用范式。详细讲解提示词优化、增加调用次数和模型微调三种使用方法,并通过翻译和计算器案例展示实际应用。强调大模型虽强大但需合理应用,避免过度依赖,适合程序员和AI初学者收藏学习。

2025-12-30 11:29:10 1122

原创 收藏!多智能体React模式实战:五大挑战与解决方案详解

本文剖析了多智能体React模式在生产环境中面临的五大挑战:工具调用延迟、上下文膨胀、中间态缺失、循环失控与监督缺位。针对这些问题,作者提出了创新解决方案:采用流式XML替代FunctionCall实现高效工具调用;通过引用机制压缩上下文;引入"万能agent"作为能力兜底;设计总结输出工具提升用户体验;构建规划MCP服务实现过程监督。这些优化方案显著提升了系统性能和任务执行质量,为多智能体系统开发提供了宝贵经验。

2025-12-30 11:11:07 914

原创 【必藏】AI Agent智能体完全指南:从入门到精通,2026年最值得关注的AI技术

文章全面剖析了AI Agent智能体的定义、发展阶段、核心模块及产业链。AI Agent具备独立思考、自主执行和持续迭代三大核心能力,通过记忆、规划、工具和执行四大模块实现智能化。2025年被视为AI Agent元年,市场规模预计将从2023年的554亿元增长至2028年的8520亿元,年均复合增长率达72.7%。文章还分析了产业链上下游企业,并指出垂直领域的AI Agent将成为新宠,市场规模可能达SaaS的十倍。

2025-12-30 11:09:08 868

原创 程序员必备:一文搞懂RAG检索增强生成,收藏级大模型应用指南

RAG(检索增强生成)技术通过外部文档分片、向量化存储、相似度检索和重排筛选,使大模型能够查阅外部知识库并生成准确回答。该技术解决了大模型知识局限问题,让模型能够像人类一样先查找信息再回答问题,广泛应用于企业文档处理、知识库问答等场景,是提升大模型应用能力的重要技术。

2025-12-30 11:07:07 648

原创 大模型性能提升秘籍:RAG与微调技术详解,程序员必学收藏

文章详细介绍了提升大语言模型性能的两种关键技术:RAG(检索增强生成)和微调(Fine-tuning)。RAG通过外部知识库检索增强回答,适合信息频繁更新的场景;微调则通过特定数据集训练模型,提高特定领域表现,响应速度更快。文章从处理速度、准确性和成本三方面对比了两种技术的优劣,强调选择应基于具体应用场景和需求,并鼓励学习大模型技术。

2025-12-30 10:37:43 376

原创 大模型部署完全指南:从理论到实践,程序员必备知识,建议收藏!

文章详细介绍了大模型部署全流程,包括模型准备、转换、推理服务封装等环节。重点讲解了模型量化、批处理、计算图转换、ONNX中间格式、CUDA/CuDNN架构、推理框架选择、K8s部署、性能监控等核心技术。还探讨了TensorRT优化、KV Cache、PagedAttention等高级技术,以及大模型在CPU部署、权重管理等方面的挑战与解决方案,为开发者提供了系统性的大模型部署知识体系。

2025-12-30 10:34:46 1265

原创 大模型提示词工程宝典:从链式思考到智能体设计,建议收藏学习

本文详细介绍大模型提示词工程方法与结构,包括链式提示、链式思考、少样本提示等技巧,以及系统提示词的身份、目标、信息、要求等构成要素。通过构建结构化提示词,可创建专业智能体实现特定任务精准处理,并强调需结合实际场景不断测试优化以发挥大模型最大效能。

2025-12-29 10:50:34 1250

原创 收藏!深入理解Agent:从入门到架构师的能力分级指南

文章将"深入理解Agent"拆解为四个能力层级:概念理解、技术应用、系统优化和架构设计,每个层级都有明确的能力要求和评判标准。详细介绍了面试官如何通过基础理论、实践经验、系统设计等方面判断候选人的理解深度,并提供了学习资源推荐。无论技术如何演进,从问题分析到方案设计的工程思维是保持竞争力的核心能力。

2025-12-29 10:40:25 857

原创 收藏!彻底搞懂Transformer:不用数学公式,只用生活案例讲透AI大模型原理

文章通过生活化方式解释Transformer的核心——注意力机制。Transformer通过自注意力让每个词关注其他词,理解上下文关系,由编码器(理解输入)和解码器(生成输出)组成。其优势在于并行处理强、能记住长距离依赖、可扩展性强,是ChatGPT等大模型的基础架构。文章用点餐场景展示了Transformer如何精准理解并生成语言,强调其"关注重点,联系上下文"的核心能力。

2025-12-29 10:34:45 691

原创 【保姆级教程】用Python微调大模型+Ollama本地部署,一篇搞定,建议收藏!

本文详细介绍了使用Python和Unsloth工具微调大型语言模型的完整流程,包括数据收集、环境设置、模型训练到通过Ollama本地部署的全过程。文章提供了分步骤的代码示例和实操指南,特别适合新手学习。同时探讨了微调的优缺点、适用场景及最佳实践,帮助读者理解何时以及如何微调LLM以满足特定任务需求。---

2025-12-29 10:31:48 929

原创 【收藏学习】智能主体分块:告别传统文本分割,解锁AI大模型高效检索新技能

智能主体分块是一种更智能的文档分割方法,通过识别逻辑断点、生成摘要与标题、保持内容重叠,解决传统分块技术遗漏上下文的问题。文章详解其工作原理、核心优势(精准检索、优质总结等)及Python实现方案,涵盖文本提取、智能分割、LLM生成摘要、嵌入处理与存储等步骤。这项技术已应用于RAG、企业文档搜索和AI聊天机器人,能将非结构化文本转化为可利用的知识,大幅提升AI应用效果。

2025-12-29 10:28:17 920

原创 【干货收藏】大模型技术全景图:从LLM到Agent的核心技术与应用场景

文章解析了LLM、ChatGPT、RAG、Function Call、Agent和MCP六大核心技术,构成现代AI系统基础技术栈。LLM提供语言能力,ChatGPT优化对话交互,RAG解决知识滞后,Function Call连接现实世界,Agent实现自主决策,MCP标准化工具交互。这些技术协同工作,推动AI向更智能方向发展,为应用AI解决实际问题提供指导。

2025-12-29 10:23:27 854

原创 【收藏必备】一文搞懂RAG:解决大模型三大痛点的企业级AI基石

检索增强生成(RAG)技术通过连接外部知识库,解决了大模型的三大缺陷:知识滞后、幻觉问题及专业领域知识不足。RAG通过离线索引将文档转化为可检索的知识块,在线检索时基于最新事实约束模型回答,确保结果准确可溯源。高级RAG优化查询、检索和后处理过程,提升系统准确性。因其合规性、成本可控性和灵活性,RAG已成为企业级AI应用的基石,增强而非替代大模型功能。

2025-12-27 10:30:40 1130

原创 大模型RAG技术详解,程序员必学干货,建议收藏!

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2025-12-27 10:26:02 478

原创 【必收藏】构建AI Agent六大痛点全解析:从入门到精通的实战解决方案

文章详细阐述了构建自主调用MCP工具的AI Agent时面临的六大技术挑战:推理决策不稳定、多步骤流程混乱、工具调用冲突、长文本处理瓶颈、安全合规风险及知识更新困境。针对每个问题,提供了结构化提示、状态机管理、工具调度器、分块摘要、本地部署和增量学习等具体解决方案,帮助开发者提升Agent的可靠性、安全性与实用性,适合从入门到实战的全阶段学习。

2025-12-27 10:17:43 696

原创 AI大模型入门到进阶面试指南:Transformer架构原理面试题详解

Transformer架构作为现代大语言模型的基础,其设计理念和核心组件是每个AI从业者必须掌握的知识点。本文精选了10道关于Transformer架构原理的经典面试题,每道题都配有详细解答,帮助读者系统掌握Transformer的核心概念。Transformer 的编码器(Encoder)和解码器(Decoder)有什么区别?•编码器(Encoder)

2025-12-27 10:15:40 822

原创 大模型应用必学:混合检索技术解决RAG精确匹配难题 | 深度好文,建议收藏

本文深入探讨混合检索技术如何结合关键词检索与语义检索的优势,解决RAG系统中单一检索模式的局限性。通过详细介绍混合检索的工作原理、Python实战指南(使用Meilisearch和FAISS),以及结果融合策略(如RRF),帮助开发者构建更准确、可靠的RAG系统。文章还分享了性能优化策略和避坑指南,助力开发者减少模型幻觉,打造真正落地、可信的生产级AI应用。

2025-12-27 10:10:53 762

原创 如何构建真正有用的 AI Agent?

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2025-12-27 10:07:41 869

原创 【收藏必备】AI智能体(Agent)框架全解析:LangGraph、AutoGen与CrewAI实战指南

本文解析了AI智能体(Agent)的概念及三大主流框架:LangGraph(工作流编排)、AutoGen(多智能体协作)和CrewAI(角色扮演团队)。详细对比了它们的核心功能、适用场景和控制力,提供选择建议,并附有大模型学习资料,帮助开发者从零入门到实战掌握AI大模型技术。

2025-12-26 10:28:09 806

原创 值得收藏!大模型RAG系统构建:通义千问3.0的256K上下文应用详解

通过结合使用通义千问3.0的指令、嵌入和重排器模型,我们构建了一个实用的RAG管道,充分利用了它们的优势。凭借256K的上下文长度和多语言支持,通义千问系列在实际任务中展现了其多功能性。作为下一步,您可以尝试增加传递给指令模型的文档数量,或者针对不同用例使用思维模型。模型的输出也很有前景。我建议您尝试使用**忠实度(Faithfulness)和答案相关性(Answer Relevancy)**等指标来评估RAG,以确保LLM在您的任务/用例中大部分没有出现幻觉。

2025-12-26 10:24:13 784

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除