自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2162)
  • 收藏
  • 关注

原创 【必看收藏】大模型vs大语言模型:AI小白必知的10个关键区别

文章详细解析了大模型与大语言模型的区别,指出许多人将两者混为一谈。大模型是参数规模庞大的深度学习模型,具有强大泛化能力;而大语言模型专注于自然语言处理,如GPT系列。文章回顾了AI发展三阶段:从CNN传统神经网络到Transformer架构,再到当前GPT预训练模型主导时代。最后提供大模型学习资料,帮助读者系统掌握AI时代核心技能,从基础理论到实战应用,包括RAG开发、Agent设计、模型微调等前沿技术。---

2026-01-06 11:25:45 499

原创 【收藏必备】Qwen3-Embedding实战指南:从零开始掌握文本嵌入技术

Qwen3-Embedding是阿里巴巴通义实验室推出的最新一代嵌入模型,具有强大语义理解和成本优势。文章详述其原理、优势及应用场景,提供PAI部署、百炼API调用、模型微调等指南,通过对比实验展示其低延迟、低成本特点,并分享工程链路优化技巧,助力开发者高效构建智能应用。

2026-01-06 11:23:33 544

原创 【建议收藏】零基础小白入门:从Excel表格详解Transformer原理,轻松掌握大模型核心

本文以零基础视角详细解析了Transformer架构的核心组件,包括位置编码解决顺序信息问题、多头注意力机制捕捉上下文关系、残差连接与层归一化优化深度网络训练,以及逐位置前馈神经网络增强非线性表达能力。作者通过Excel表格可视化计算过程,帮助读者理解Transformer如何通过并行处理提升效率,成为大模型的基础架构。文章适合AI初学者收藏学习,为理解现代大模型技术奠定基础。

2026-01-06 11:20:09 277

原创 【必藏】Prompt与Context协同实战:小白也能打造精准AI应用的完整指南

本文系统讲解AI应用开发中Prompt与Context的协同技巧。Prompt作为AI的"行动指南",包含任务目标、约束规则;Context作为"决策依据",提供多源信息。二者协同需遵循Context为Prompt服务、Prompt调用Context的原则。通过Dify平台实操,展示Context分层管理、Prompt模块化设计和工作流编排方法,助力开发者打造高精准AI应用,避免常见开发误区,实现从'能用'到'好用'的质变。

2026-01-06 11:16:50 439

原创 【值得收藏】大模型预训练技术详解及系统学习资料分享

本文详细介绍了大模型预训练的核心技术,包括Transformer架构、Llama模型实现、数据准备与处理、训练参数设置等关键环节。同时阐述了学习大模型的重要性和广阔应用前景,提供了从基础理论到实战应用的系统学习路径,涵盖模型训练、微调、RAG、Agent开发等方向,并整理了行业报告、面试题等实用资源,帮助读者全面掌握AI大模型技术。

2026-01-06 11:14:00 600

原创 【必看收藏】AI入行全攻略:2026年5大高薪方向解析,程序员必看!

想入行AI却不知道选什么方向?2025年AI人才需求已清晰分层——从核心技术研发到跨行业落地,甚至伦理合规,每个领域都有明确的“高薪技能密码”。整理了5大方向的薪资、职责和必备能力,帮你精准定位发力点。

2026-01-06 11:09:17 283

原创 你的Embedding模型选对了吗?RAG开发中11款热门选项深度解析!

文章介绍MTEB基准测试平台及其在评估文本嵌入模型中的应用,详细列出中英文嵌入模型排行榜,包括各模型特点与适用场景。同时提供从零学习大模型的完整路径,包含教学内容、学习路线图、视频书籍、行业报告和面试题等资源,帮助读者系统掌握大模型技术,抓住AI风口。

2026-01-06 11:06:09 241

原创 【必看收藏】深度研究智能体(DR Agents)全解析:从基础架构到实战应用,程序员必学的AI大模型进阶指南

本文系统分析了深度研究智能体(DR Agents)的基础技术与架构组件,包括信息获取策略、工具使用框架和工作流设计。文章对比了基于API与浏览器的检索方法,评估了当前基准测试的局限性,并探讨了多智能体架构、异步并行执行等未来研究方向。深度研究智能体通过融合动态推理、自适应规划和多轮信息检索能力,正在成为自动化研究支持的重要范式,但其发展仍面临信息获取广度与执行效率等挑战。

2026-01-05 20:15:51 582

原创 【强烈收藏】AI大模型开发者必看:MinerU与PaddleOCR全面对比与技术深度解析,从零掌握PDF解析神器

本文对比了MinerU与PaddleOCR在PDF解析中的表现,MinerU在表格和图片整体完整性上更优,能将元素各部分作为同一字典的不同字段。MinerU采用多模型集成、模块化设计和中间态JSON文件,支持灵活后处理,特别适合RAG和Deep Research应用。其技术优势包括布局检测、PDF分类、OCR文本语义连贯性保障等,为复杂PDF文档解析提供了高效解决方案,是大模型应用的重要技术支撑。---

2026-01-05 20:12:29 632

原创 从入门到精通:企业级RAG系统实战指南,收藏级RAG开发全流程解析

文章详细解析了企业级RAG系统的三大核心环节:文档预处理需结合业务场景统一格式并优化内容质量;文档召回应处理用户问题、提取标签并进行去重排序;生成增强需整合召回数据、处理上下文窗口限制并优化用户体验。强调RAG项目虽易,但要做好企业级系统需深入理解业务场景并解决技术难点。

2026-01-05 20:09:54 978

原创 收藏必学!用Python基础库从零手撕RAG内核,彻底掌握检索增强生成的底层原理

本文详细介绍了如何仅使用Python基础库(如numpy)构建RAG系统,不依赖现成框架。文章从文本分块、向量化、相似度检索到响应生成,逐行代码解析RAG核心逻辑,并深入讲解了智能分块、上下文增强检索、块标题生成、问题生成、查询改写、重排序、相关段落提取、上下文压缩和反馈机制等9大实战技巧,帮助读者突破回答质量瓶颈,真正掌握RAG的底层原理。

2026-01-05 20:08:02 778

原创 【值得收藏】MCP协议入门到实战:大模型与外部系统交互的通用桥梁,附代码与学习资源

MCP (Model Context Protocol)是OpenAI提出的标准化协议,作为大模型与外部系统交互的"通用桥梁"。文章介绍了MCP的核心设计、提供的工具/资源/事件能力和应用场景,并通过汇率转换实战案例展示了如何实现MCP client、server与LLM模型调用。文章详细讲解了项目结构和核心代码实现,帮助开发者理解如何利用MCP协议打通大模型与真实世界的数据/工具,促进AI Agent生态形成"标准化接口"。

2026-01-05 20:05:05 639

原创 【珍藏】从零掌握大模型检索增强技术:RAG到GraphRAG的完整指南

本文详细介绍了检索增强生成(RAG)技术及其进阶版本GraphRAG。传统RAG通过语义相似度在向量空间中检索信息,无法捕获数据间依赖关系。GraphRAG利用知识图谱构建实体关系网络,通过社区摘要和分层方法提供更全面的知识表达。传统RAG适合结构良好的独立数据,GraphRAG更适合信息关联密切的数据。建议结合两种方法构建混合系统,兼顾语义相似度与结构洞察,提升大模型回答质量。

2026-01-05 20:02:11 923

原创 【必收藏】法律大模型实战:从文档到知识图谱的RAG系统构建全攻略

本文详细介绍了如何利用LlamaCloud和Neo4j等工具,将复杂的法律文档转换为结构化知识图谱,以提升RAG系统性能。通过文档解析、分类、信息提取和图谱构建四个关键步骤,实现了法律文档的智能化处理,解决了传统向量搜索无法捕捉复杂关系的局限性。这一方法特别适用于法律领域,为法律信息的检索和分析提供了全新路径,对法律专业人士具有实用价值。

2026-01-05 19:59:24 524

原创 为什么你的LLM搞不定复杂任务?一文掌握ReAct+Reflexion核心技术

文章介绍了ReAct和Reflexion两种提升大语言模型能力的提示技术框架。ReAct通过"推理-行动-观察"循环使模型与外部环境交互,减少幻觉;Reflexion在此基础上增加评估和反思机制,形成完整学习闭环,使模型能从错误中学习。两者结合既保证即时响应能力,又具备长期优化潜力,显著提升了LLM在知识密集型、决策型和编程任务中的表现,是构建下一代智能系统的核心技术。

2026-01-04 10:59:19 783

原创 【收藏级干货】RAG技术实战:让大模型理解企业知识,AI落地必备技能

RAG技术是让大模型理解企业私有知识的关键解决方案,通过检索增强生成实现基于真实数据的准确回答。文章详细介绍了RAG技术的演进历程、系统架构设计、检索质量优化方法、生产部署最佳实践,以及未来发展趋势。从基础RAG到智能RAG,再到多模态、实时学习和联邦RAG,为企业构建可信任的AI应用提供了完整的技术路径。

2026-01-04 10:49:05 959

原创 智能体(Agent)设计模式完全指南,小白也能掌握的大模型系统工程

智能体正从对话工具升级为业务执行系统,真正决定其上限的不是模型大小,而是设计模式。本文系统介绍并行化、链式执行、路由、反思、规划等核心设计模式,以及工具集成、安全保障等工程实践,帮助开发者构建稳定、可控、可规模化的智能体系统,实现从"能聊"到"能跑"的关键转变。

2026-01-04 10:45:20 1076

原创 【必收藏】文本分块:RAG系统的核心技术,小白也能掌握的大模型优化指南

本文详细介绍了文本分块技术在RAG系统中的关键作用,包括其定义、必要性及多种分块策略(固定尺寸、语义分块、智能体驱动等)。文章强调文本分块直接影响检索准确性和系统性能,需遵循语义连贯性、上下文完整性和计算效率三大原则。不存在适用于所有场景的"万能方法",最佳分块策略应根据内容类型、查询复杂度和模型能力灵活选择,并通过持续迭代优化系统表现。

2026-01-04 10:28:27 785

原创 从零开始学大模型:一文读懂LSTM如何解决神经网络记忆难题(收藏必学)

本文详细解释了从RNN到LSTM的发展历程,揭示了传统神经网络缺乏记忆的"金鱼脑"缺陷,以及RNN因梯度消失无法处理长序列的问题。LSTM通过三个门控机制实现选择性记忆,解决了长期依赖问题,成为NLP领域里程碑,但也存在计算复杂和顺序处理的局限。理解LSTM是掌握现代深度学习序列建模的基础。

2026-01-04 10:25:55 644

原创 【必收藏】Agentic AI架构详解:超越LLM+API的七层工程系统设计指南

本文详解Agentic AI七层架构设计,从UI接口到基础模型,全面剖析如何构建超越LLM+API的智能Agent系统。各层包含明确的职责边界和可观测性设计,确保系统能可靠执行复杂任务,是企业级AI落地的完整技术指南。

2026-01-04 10:19:51 795

原创 大模型多Agent协作技术详解:从入门到精通,开发者必收藏学习指南

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-02 09:15:00 755

原创 【收藏必学】智能体工作流设计模式:让AI从“能对话“进化为“会决策“

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2026-01-02 09:00:00 984

原创 深度解析大模型上下文处理技术:从基础到进阶(小白也能学会,建议收藏)

本文全面介绍大模型中的上下文处理技术,包括长上下文处理、多模态整合与结构化数据处理方法。详细探讨了通过架构创新、位置插值与上下文扩展解决长文本难题的技术路径,以及多模态信息融合和知识图谱等结构化数据整合方案。同时阐述了上下文自我优化与适应机制,包括基础自我优化框架、元学习与自主进化等前沿技术,为开发者提供系统性的技术指导与实践参考。---

2026-01-02 08:45:00 1423

原创 【程序员必看】大模型学习资源汇总:零基础到进阶,全套资料免费分享

本文提供了一套完整的AI大模型学习资源,包含从基础理论到实战应用的五大模块,适合应届生、零基础转型者和传统开发者。资源涵盖视频教程、PDF书籍、行业报告、面试题等,帮助学习者系统掌握大模型技术。资料通过vx二维码免费获取,助力从零入门到实战进阶,抓住AI大模型发展机遇。

2026-01-02 08:30:00 1141

原创 【必学收藏】大模型提示词编写与优化全攻略:从入门到精通

要编写并优化大模型提示词,关键在于**清晰明确地定义任务目标、提供充足的上下文信息、设定具体的输出期望(如格式、风格、角色扮演),并通过迭代优化逐步改进提示效果**。针对特定任务(如写作、编程、数据分析),需结合任务特性设计提示词,例如分步引导、提供关键参数、明确问题与期望等。本教程将详细阐述这些原则与技巧,并提供大量实战案例。

2026-01-02 08:00:00 729

原创 【建议收藏】掌握AI大模型四阶技术:从提示工程到预训练的学习指南与职业机遇

本文系统梳理AI发展四阶段及大模型四阶技术(提示工程、AI智能体、大模型微调、预训练技术),详解各技术特点、适用人群与应用场景。随着AI技术演进,跨领域整合、创造性思考等技能持续升值,催生AI架构师、垂直领域专家等高薪职业。文章提供系统学习路径,帮助读者结合自身情况,抓住人工智能时代发展机遇。

2026-01-01 09:00:00 557

原创 【收藏】AI Agent开发核心指南:提示词、工作流与RAG知识库实战

文章系统阐述了在Agentic AI技术背景下构建可靠、高效AI Agent应用的方法。核心竞争力已转向提示词工程、工作流设计和知识库构建三大领域。详细介绍了Agent核心架构、提示词设计技巧、使用DSL描述工作流的优势、RAG与关系型数据库的应用,以及AI安全防护和项目确定方法,为开发者提供了从理论到实践的完整指南。

2026-01-01 08:45:00 1337

原创 收藏!从Prompt到Context:大模型Agent架构全解析,小白也能看懂的智能体进化指南

本文系统拆解了大模型驱动的Agent架构,以"Prompt→Context"为核心逻辑,从智能起点到记忆载体,再到感知、决策、执行的完整闭环,详解Agent如何从单次响应升级为持续智能决策。同时分析Context容量、质量等关键技术挑战,展望多模态融合、Auto-Prompting等未来方向,为理解Agent智能演化提供全景视角。

2026-01-01 08:45:00 844

原创 收藏!一文读懂大模型高效架构:线性、稀疏、混合技术全攻略

本文系统梳理了大模型高效架构的七大方向:线性序列建模(降低计算复杂度)、稀疏注意力(选择性交互)、高效全注意力(优化实现)、稀疏混合专家(条件计算)、混合架构(多技术融合)、扩散模型(并行生成)及跨模态应用。这些创新架构解决了Transformer二次复杂度瓶颈,为长上下文和多模态任务提供支持。未来研究将聚焦算法-硬件协同设计和自适应架构,推动大模型向更高效、更通用的方向发展。

2026-01-01 08:30:00 719

原创 【建议收藏】多模态RAG技术原理与大模型学习路径,小白也能掌握

多模态RAG技术整合多模态数据,实现跨模态检索与生成。核心技术包括多模态编码器、检索系统和生成模型,流程涵盖数据预处理、查询处理和生成响应。面临模态对齐等挑战,未来将向高效表示和实时处理发展。文章还提供大模型学习资源,帮助技术人从零入门到实战掌握AI大模型技术。

2026-01-01 08:00:00 869

原创 AI Agent开发平台选择指南:6大主流框架对比,小白必备收藏

本文详细解析了六大主流AI智能体开发平台(Dify、Coze、n8n、AutoGen、LangChain、CrewAI)的特点、优势和适用场景,帮助开发者根据业务需求精准选型。文章从平台定位、核心功能、适合人群等角度进行全面对比,提供零代码、企业级、多Agent协作等不同场景的解决方案,并预测智能体平台将向功能融合、多Agent协作、私有化部署等方向发展。

2025-12-31 08:45:00 568

原创 值得收藏!大模型(LLM)学习路线图:从基础理论到实战应用,小白也能轻松上手

本文系统介绍LLM学习课程,分为三大模块:LLM基础(数学、Python、神经网络和NLP)、LLM科学家(模型构建与优化)和LLM工程师(应用开发与部署)。课程涵盖从理论基础到实战应用的完整学习路径,包括向量存储、RAG、代理系统等前沿技术,适合不同背景的学习者入门并精通大模型技术,实现AI时代的能力提升。

2025-12-31 08:45:00 1240

原创 收藏必备!AI大模型入门到精通:基础知识全解析

文章系统介绍了AI大模型所需的跨学科知识体系,包括数学基础、计算机科学、机器学习、深度学习、自然语言处理等核心领域,详细阐述了Transformer架构、预训练与微调、分布式训练等关键技术,并探讨了伦理安全问题。同时提供了实践工具和学习路径,帮助读者从零开始构建大模型知识框架,为深入学习和实践打下坚实基础。

2025-12-31 08:00:00 689

原创 【值得收藏】vLLM高性能推理引擎完全指南:PagedAttention优化+23倍吞吐提升,大模型部署从入门到实战

vLLM是伯克利开发的高性能大语言模型推理部署库,采用PagedAttention和持续批处理技术,内存效率高,吞吐量提升达23倍。支持多种量化格式和并行计算,兼容HuggingFace和OpenAI API。文章详细介绍了与Ollama、LM Studio的对比、环境配置、项目初始化、模型下载与测试流程,以及如何搭建类OpenAI服务。适合生产环境部署和高并发场景,但对硬件要求较高。---

2025-12-31 07:30:00 1565

原创 大模型入门必学:掌握核心参数与两大范式,建议收藏反复研读

本文深入解析大模型入门知识,重点介绍核心参数messages(对话记忆机制)与tools(工具选择能力),以及RAG与ReAct两大应用范式。详细讲解提示词优化、增加调用次数和模型微调三种使用方法,并通过翻译和计算器案例展示实际应用。强调大模型虽强大但需合理应用,避免过度依赖,适合程序员和AI初学者收藏学习。

2025-12-30 11:29:10 1125

原创 收藏!多智能体React模式实战:五大挑战与解决方案详解

本文剖析了多智能体React模式在生产环境中面临的五大挑战:工具调用延迟、上下文膨胀、中间态缺失、循环失控与监督缺位。针对这些问题,作者提出了创新解决方案:采用流式XML替代FunctionCall实现高效工具调用;通过引用机制压缩上下文;引入"万能agent"作为能力兜底;设计总结输出工具提升用户体验;构建规划MCP服务实现过程监督。这些优化方案显著提升了系统性能和任务执行质量,为多智能体系统开发提供了宝贵经验。

2025-12-30 11:11:07 921

原创 【必藏】AI Agent智能体完全指南:从入门到精通,2026年最值得关注的AI技术

文章全面剖析了AI Agent智能体的定义、发展阶段、核心模块及产业链。AI Agent具备独立思考、自主执行和持续迭代三大核心能力,通过记忆、规划、工具和执行四大模块实现智能化。2025年被视为AI Agent元年,市场规模预计将从2023年的554亿元增长至2028年的8520亿元,年均复合增长率达72.7%。文章还分析了产业链上下游企业,并指出垂直领域的AI Agent将成为新宠,市场规模可能达SaaS的十倍。

2025-12-30 11:09:08 898

原创 程序员必备:一文搞懂RAG检索增强生成,收藏级大模型应用指南

RAG(检索增强生成)技术通过外部文档分片、向量化存储、相似度检索和重排筛选,使大模型能够查阅外部知识库并生成准确回答。该技术解决了大模型知识局限问题,让模型能够像人类一样先查找信息再回答问题,广泛应用于企业文档处理、知识库问答等场景,是提升大模型应用能力的重要技术。

2025-12-30 11:07:07 649

原创 大模型性能提升秘籍:RAG与微调技术详解,程序员必学收藏

文章详细介绍了提升大语言模型性能的两种关键技术:RAG(检索增强生成)和微调(Fine-tuning)。RAG通过外部知识库检索增强回答,适合信息频繁更新的场景;微调则通过特定数据集训练模型,提高特定领域表现,响应速度更快。文章从处理速度、准确性和成本三方面对比了两种技术的优劣,强调选择应基于具体应用场景和需求,并鼓励学习大模型技术。

2025-12-30 10:37:43 388

原创 大模型部署完全指南:从理论到实践,程序员必备知识,建议收藏!

文章详细介绍了大模型部署全流程,包括模型准备、转换、推理服务封装等环节。重点讲解了模型量化、批处理、计算图转换、ONNX中间格式、CUDA/CuDNN架构、推理框架选择、K8s部署、性能监控等核心技术。还探讨了TensorRT优化、KV Cache、PagedAttention等高级技术,以及大模型在CPU部署、权重管理等方面的挑战与解决方案,为开发者提供了系统性的大模型部署知识体系。

2025-12-30 10:34:46 1284

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除