缺乏大模型经验,还有机会吗?

做大模型一年半,经历了无数场面试。

关于经验,我最常听到的候选人(尤其是学生)的说辞是:我没有大模型经验,可以给个机会吗?答案是,我们并不看重候选人的大模型训练经验。这里不是说经验不重要,而是大部分人的经验没有意义。只有头部大模型公司的核心骨干的经验才有意义,而这和绝大多数
人选无关(e.g.:校招/实习常见的简历》微调 LLaMA 7B,社招常见的简历是各个公司自己的 XX 大模型)

事实上,平平无奇的大模型经验反而是扣分项。候选人说自己有大模型训练经验,我会问:你说你有千卡训练XXB模型的经验用的是什么并行配置,DP/PP/TP 如何划分?

很多时候,我得到的回答是:我不知道。甚至有时候,候选人会问我,什么是 DP,我实在是无言以对。 做CV 的候选人还能背两句 DP 和 DDP 区别的八股,做 NLP 的候选人,在最需要并行的研究领域,却完全不知道 DP 是什么。类似地,如果候选人做过大模型训练,却不知道什么是 MFU,不知道Megatron 启动的命令行参数“含义是什么[1]…都属于负分经历,

论文,现在不比以前,很多人都有顶会论文。就像大家日常吐槽的一样,90%的论文都是废纸。特别亮眼的文章自然是加分项,例如PEFT(Parameter-Efficient Fine-Tuning)方向,最近的 LoRA-GA和 LoRA-pro 都是不错的文章,但大部分改网络结构讲故事的普通论文是不加分的。如果你有论文,那么说明你经过了基本的科研训练,仅此而已。

除了经验和论文,还能看什么用一个词来概括,是潜力。潜力这个词太虚这里换成两个词来描述:基础、好奇心。

什么是基础? 对于学生来说,首要的自然是学习。学校背景如何、专业课成绩如何、基础知识是否扎实?面试时遇到学生,经常碰到的尴尬场面是:问数学题(高数/线代/概统),答日大一学的忘了;问编程题(leetcode easy/medium难度),答日没刷题写不了;问模型结构(指 LLaMA),答日平常都是调 ChatGPT API,不清楚。相当一部分候选人是答不上来 transformer 模型结构的—半人承认自己不清楚细节一半人里 90% 是自以为自己知道、但实际不知道。

大部分科研人的代码能力孱弱到只会调ChatGPT API,或者改改 torch.nn.Module,或者调用开源框架“跑跑 SFT/RLHF。分不清楚进程和线程,操作系统背完就忘;编程语言只会一些最基本的 Pvthon,其他语言只会一些最基本的 Python,其他语言一概不通。是的,我知道这不影响你发论文,不影响你毕业,git clone-下开源代码“改两行就能满足你的需求嘛。但是,如果你想做改变世界的研究呢?例如,穿越回 2016年,你想到了AlphaGo的idea,给你足够的计算资源,你有信心自己动手实现它吗?

什么是好奇心? 没有大模型经验没关系,但是你愿意主动去了解吗?你会去主动读大模型的论文吗?可惜很多候选人不去读。甚至别说读论文,有些想转行大模型的人连大模型用都不用一下。ChatGPT能解决什么问题、不能解决什么问题?它的能力边界在哪里?一问一个不知道。有时候跟一些候选人保持联系了几个月,但是对方对大模型解在几个月的时间里没有任何长进,实社是
令人惋惜。如果没机会训练100B 以上的模型,甚至没有机会训练 7B的模型,你愿意去下载和分析别人训好的 7B乃至18的模型,看看里面权重分布的规律吗?如果有这个细腻的心思,可能你在模型量化方面已经做出了很好的工作。

也有时候,基础和好奇心可以互补。例如模型训练刚开始时的 loss 大约是多少?如果数学基础扎实,那么可以做一些合理的假设推导出来;如果好奇心强,会注意观察每一个细节,也能答对这道题。 最后,再介绍一些比普普通通的大模型训练经验和论文更加分的经历的具体例子:

A.在两张 2080Ti 上实现和比较过不同的流水算法的性能;
B.用 Triton 自己实现过一些算子:
C.能讲出不同的大模型使用的 tokenizer 的差异;
D.在 Python 以外的语言上有不错的开发能力(例如某些开源项目“背书):
E.实现过一个效果拔群的五子棋 AI(最好是RL 算法)。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值