初值定理-2025考研良哥信号与系统复习大全

bd29557b4d2e45ec83f6b3b5df048256.jpeg

f4c014113fe3d8793721df2f45c138c6.jpeg

d693d785de5d7ee0f74a5afbba14c7b9.jpeg 

信号与系统考研必备:Z变换基本性质与初值定理深度解析

在信号与系统的考研征途中,Z变换及其基本性质是我们无法绕过的知识点。而其中的初值定理,更是解题时的一把利器。今天,我们就来一起深入探讨Z变换的基本性质,并重点解析初值定理,为你的考研复习增添一份助力!

🔍 Z变换基本性质概览

Z变换,作为离散时间信号分析的重要工具,其基本性质众多且应用广泛。这些性质包括但不限于线性性质、时移性质、频移性质、尺度变换性质以及我们今天要重点讨论的初值定理。掌握这些性质,对于理解和分析离散时间信号具有重要意义。

🌟 初值定理详解

📚 定义与公式

初值定理是Z变换中的一个重要定理,它给出了在特定条件下,离散时间信号的初始值与其Z变换在z=1处的极限值之间的关系。具体地,若离散时间信号x[n]满足一定条件(如绝对可和或因果等),则其初值x[0]可由Z变换X(z)在z=1处的极限求得,即:

x[0]=z→1lim(z−1)X(z)

注意,这里的条件“z=1处的极限存在”是关键,它要求X(z)在z=1附近是解析的,且没有极点或零点恰好位于z=1。

🌈 理解与应用

初值定理的实质是通过Z变换在复平面上的一个特定点(z=1)来求解信号的初始值。这种方法的优点在于,它避免了直接对信号进行复杂的时域分析,而是利用Z变换的频域特性来间接求解。因此,在处理一些复杂的离散时间信号时,初值定理显得尤为有用。

🌰 实例解析

假设我们有一个简单的离散时间信号x[n]=anu[n](其中∣a∣<1,u[n]为单位阶跃函数),其Z变换为X(z)=1−az−11。现在,我们想要利用初值定理来求解信号的初始值x[0]。

首先,我们注意到信号是因果的,且∣a∣<1保证了Z变换在z=1处是收敛的。然后,我们计算(z−1)X(z)在z=1处的极限:

#考研[话题]#&nbsp; #考研信号与系统[话题]#&nbsp;&nbsp; #考研良哥[话题]#&nbsp;&nbsp; #考研信号与系统网课[话题]#&nbsp; #2025考研[话题]#&nbsp; #复习大全[话题]#&nbsp; #研究生初试[话题]#&nbsp; #北京邮电大学考研[话题]#

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信号与系统中,初值定理和终值定理是两个非常重要的定理,它们可以帮助我们理解信号在系统中的行为以及系统对信号的影响。下面我分别介绍一下初值定理和终值定理的概念和推导过程。 1. 初值定理 初值定理是指在一个系统中,如果输入信号在时刻 t=0 时存在,那么输出信号在 t=0 时的值等于系统的初始状态。这个定理可以用以下公式表示: lim(t→0) x(t) = x(0) 其中,x(t) 表示输入信号在时刻 t 的值,x(0) 表示系统在时刻 t=0 的初始状态。 下面我们来推导一下初值定理的公式。 假设系统的输入输出关系可以用微分方程表示为: y(t) + a1*y'(t) + a2*y''(t) + ... + an*y^(n)(t) = b0*x(t) + b1*x'(t) + b2*x''(t) + ... + bm*x^(m)(t) 其中,y(t) 表示系统的输出,x(t) 表示系统的输入,a1~an 和 b0~bm 是常数,y'(t) 表示 y(t) 的一阶导数,y''(t) 表示 y(t) 的二阶导数,以此类推。 对上述微分方程两边同时取 t=0 时的极限,得到: lim(t→0) y(t) + a1*lim(t→0) y'(t) + a2*lim(t→0) y''(t) + ... + an*lim(t→0) y^(n)(t) = b0*lim(t→0) x(t) + b1*lim(t→0) x'(t) + b2*lim(t→0) x''(t) + ... + bm*lim(t→0) x^(m)(t) 由于初值定理是指在 t=0 时的情况,因此上式可以简化为: y(0) = b0*x(0) 也就是说,在 t=0 时,输出信号的值等于输入信号在 t=0 时的值乘以常数 b0,这个常数是系统的零状态响应。因此,初值定理的公式就是: lim(t→0) x(t) = x(0) 2. 终值定理 终值定理是指在一个系统中,如果输入信号在时间趋于无穷大时趋于稳定,那么输出信号在时间趋于无穷大时的值等于输入信号在时间趋于无穷大时的稳态值与系统的稳态响应之和。这个定理可以用以下公式表示: lim(t→∞) y(t) = lim(t→∞) x(t)·H(s) 其中,x(t) 表示输入信号,y(t) 表示输出信号,H(s) 表示系统的传递函数。 下面我们来推导一下终值定理的公式。 假设系统的输入输出关系可以用微分方程表示为: y(t) + a1*y'(t) + a2*y''(t) + ... + an*y^(n)(t) = b0*x(t) + b1*x'(t) + b2*x''(t) + ... + bm*x^(m)(t) 将上式两边同时取 Laplace 变换,得到: Y(s) + a1*s*Y(s) + a2*s^2*Y(s) + ... + an*s^n*Y(s) = b0*X(s) + b1*s*X(s) + b2*s^2*X(s) + ... + bm*s^m*X(s) 将上式整理后得到: Y(s) = X(s)·H(s) 其中,H(s) 表示系统的传递函数,是一个复变量函数,可以表示为: H(s) = b0 + b1*s + b2*s^2 + ... + bm*s^m / (s^n + a1*s^(n-1) + a2*s^(n-2) + ... + an) 将 H(s) 分解为部分分式的形式,可以得到: H(s) = C1/s + C2/s^2 + ... + Cn/s^n + F(s) 其中,C1、C2、...、Cn 是常数,F(s) 是一个关于 s 的有限阶多项式。 对于一个稳定系统,当 t 趋于无穷大时,输入信号的稳态值等于输入信号在时间趋于无穷大时的极限值。因此,可以得到: lim(t→∞) x(t) = lim(s→0) sX(s) 同理,输出信号在时间趋于无穷大时的值等于输入信号在时间趋于无穷大时的稳态值与系统的稳态响应之和,即: lim(t→∞) y(t) = lim(s→0) sY(s) = lim(s→0) sX(s)·H(s) 这就是终值定理的公式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值