双边指数序列-信号与系统复习大全考研良哥

1912862c625bb54d3ce04d6fa531e352.jpeg

f3ea22eed7607b62aa6965db94a9cd96.jpeg

6fd17e9bd8ac0e61e30a751af67d35a5.jpeg

双边指数序列,一个听起来就让人充满好奇心的名字,它在信号处理领域扮演着举足轻重的角色。那么,它的DTFT究竟有何独特之处呢?让我们一同揭开它的神秘面纱!🎉

双边指数序列的定义
双边指数序列是一种在时间轴上无限延伸,且以指数形式衰减或增长的离散时间信号。其一般形式可以表示为:

x[n]=an

其中,a 是实数且 a=0。注意,这里并没有单位阶跃序列 u[n] 来限制 n 的取值范围,因此序列是双向无限的。

双边指数序列的DTFT
对于双边指数序列,其DTFT 的计算稍微复杂一些,因为我们需要考虑 n 的所有整数值。根据DTFT的定义,我们有:

X(ejω)=n=−∞∑∞ane−jωn

这个求和可以拆分为两部分:正指数部分和负指数部分。通过等比数列求和的公式,我们可以得到:

X(ejω)=n=0∑∞(ae−jω)n+n=−∞∑−1(ae−jω)n

化简后得到:

X(ejω)=1−ae−jω1+1−aejω1×aejωaejω=∣1−ae−jω∣21−∣a∣2

注意,这里我们利用了复数的共轭性质和等比数列求和的收敛条件(即&nbsp;∣a∣<1&nbsp;时级数收敛,但双边指数序列的DTFT在&nbsp;∣a∣>1&nbsp;时也存在,只是以另一种形式表现)。

解析与理解

  • 频率响应:双边指数序列的DTFT 是一个复数函数,其实部和虚部随&nbsp;ω&nbsp;的变化而变化,形成了序列的频谱。特别地,当&nbsp;∣a∣=1&nbsp;时,DTFT 不存在(或说为无穷大),因为此时序列既不收敛也不发散。
  • 频谱特性:双边指数序列的频谱是一个连续的、非周期的函数,具有特定的形状和特性。当&nbsp;∣a∣<1&nbsp;时,频谱表现出低通特性;当&nbsp;∣a∣>1&nbsp;时,则表现出高通特性。

复习Tips

  • 理解定义:明确双边指数序列的定义和条件,理解其无限双向延伸的特性。
  • 推导过程:亲手推导DTFT的计算过程,加深对等比数列求和和DTFT定义的理解。
  • 频谱分析:通过绘制&nbsp;X(ejω)&nbsp;的图形或进行数值计算,直观感受双边指数序列的频谱特性。
  • 对比学习:将双边指数序列的DTFT与其他常见序列(如单边指数序列、单位脉冲序列等)的DTFT进行对比学习,加深对不同序列频谱特性的理解。

最后,记得在复习过程中保持好奇心和求知欲!双边指数序列只是信号与系统知识海洋中的一滴水,但掌握好它,将为你打开更广阔的知识视野。加油,未来的信号与系统专家!💪

#考研[话题]#&nbsp; #考研信号与系统[话题]#&nbsp;&nbsp; #考研良哥[话题]#&nbsp;&nbsp; #考研信号与系统网课[话题]#&nbsp; #2025考研[话题]#&nbsp; #复习大全[话题]#&nbsp; #研究生初试[话题]#&nbsp; #北京邮电大学考研[话题]#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值