Python打卡 DAY 11

超参数调整专题1

知识点回顾

1.  网格搜索

2.  随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)

3.  贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)

4.  time库的计时模块,方便后人查看代码运行时长

今日作业:

对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索

import pandas as pd    
import numpy as np     
import matplotlib.pyplot as plt   
import seaborn as sns  

plt.rcParams['font.sans-serif'] = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False    
data  = pd.read_csv('data.csv')

discrete_features = data.select_dtypes(include=['object']).columns.tolist()

home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2,
    'Have Mortgage': 3,
    'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)


years_in_job_mapping = {
    '< 1 year': 1,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)


data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") 
list_final = [] 
for i in data.columns:
    if i not in data2.columns:
       list_final.append(i) 
for i in list_final:
    data[i] = data[i].astype(int)


term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  
 
for feature in continuous_features:     
    mode_value = data[feature].mode()[0]         
    data[feature].fillna(mode_value, inplace=True)    
 
# 划分训练集、验证集和测试集,因为需要考2次
# 这里演示一下如何2次划分数据集,因为这个函数只能划分一次,所以需要调用两次才能划分出训练集、验证集和测试集。
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1)  # 特征,axis=1表示按列删除
y = data['Credit Default']  # 标签
# 按照8:1:1划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42)  # 80%训练集,20%临时集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)  # 50%验证集,50%测试集
import lightgbm as lgb #LightGBM分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
import time
warnings.filterwarnings("ignore") # 忽略所有警告信息
print("--- 1. 默认参数LightGBM (训练集 -> 测试集) ---")
start_time = time.time() # 记录开始时间
lgb_model = lgb.LGBMClassifier(random_state=42)
lgb_model.fit(X_train, y_train) # 在训练集上训练
lgb_pred = lgb_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
print("\n--- 2. 网格搜索优化LightGBM (训练集 -> 测试集) ---")
from sklearn.model_selection import GridSearchCV
# 定义要搜索的参数网格
param_grid = {
    'n_estimators': [50, 100, 200],  # 树的数量
    'max_depth': [-1, 10, 20, 30],  # 树的最大深度,-1表示不限制
    'num_leaves': [20, 31, 40],  # 树的最大叶子节点数
    'learning_rate': [0.01, 0.1, 0.2],  # 学习率
}
# 创建网格搜索对象
grid_search = GridSearchCV(estimator=lgb.LGBMClassifier(random_state=42), # LightGBM分类器
param_grid=param_grid, # 参数网格
cv=5, # 5折交叉验证
n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time()
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time()
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的LightGBM分类器 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("网格搜索优化后的LightGBM分类器 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
# --- 2. 贝叶斯优化LightGBM分类器 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from skopt import BayesSearchCV
from skopt.space import Integer, Real
# 定义要搜索的参数空间
search_space = {
    'n_estimators': Integer(50, 200),  # 树的数量
    'max_depth': Integer(-1, 30),  # 树的最大深度,-1表示不限制
    'num_leaves': Integer(20, 50),  # 树的最大叶子节点数
    'learning_rate': Real(0.01, 0.2, prior='log-uniform'),  # 学习率,对数均匀分布
}
# 创建贝叶斯优化搜索对象
bayes_search = BayesSearchCV(
    estimator=lgb.LGBMClassifier(random_state=42),
    search_spaces=search_space,
    n_iter=32,  # 迭代次数,可根据需要调整
    cv=5, # 5折交叉验证,这个参数是必须的,不能设置为1,否则就是在训练集上做预测了
    n_jobs=-1,
    scoring='accuracy'
)
start_time = time.time()
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train)
end_time = time.time()
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", bayes_search.best_params_)
# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_
best_pred = best_model.predict(X_test)
print("\n贝叶斯优化后的LightGBM分类器 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的LightGBM分类器 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))

@浙大疏锦行 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值