超参数调整专题1
知识点回顾
1. 网格搜索
2. 随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)
3. 贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)
4. time库的计时模块,方便后人查看代码运行时长
今日作业:
对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
data = pd.read_csv('data.csv')
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv")
list_final = []
for i in data.columns:
if i not in data2.columns:
list_final.append(i)
for i in list_final:
data[i] = data[i].astype(int)
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()
for feature in continuous_features:
mode_value = data[feature].mode()[0]
data[feature].fillna(mode_value, inplace=True)
# 划分训练集、验证集和测试集,因为需要考2次
# 这里演示一下如何2次划分数据集,因为这个函数只能划分一次,所以需要调用两次才能划分出训练集、验证集和测试集。
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:1:1划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%临时集
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42) # 50%验证集,50%测试集
import lightgbm as lgb #LightGBM分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
import time
warnings.filterwarnings("ignore") # 忽略所有警告信息
print("--- 1. 默认参数LightGBM (训练集 -> 测试集) ---")
start_time = time.time() # 记录开始时间
lgb_model = lgb.LGBMClassifier(random_state=42)
lgb_model.fit(X_train, y_train) # 在训练集上训练
lgb_pred = lgb_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
print("\n--- 2. 网格搜索优化LightGBM (训练集 -> 测试集) ---")
from sklearn.model_selection import GridSearchCV
# 定义要搜索的参数网格
param_grid = {
'n_estimators': [50, 100, 200], # 树的数量
'max_depth': [-1, 10, 20, 30], # 树的最大深度,-1表示不限制
'num_leaves': [20, 31, 40], # 树的最大叶子节点数
'learning_rate': [0.01, 0.1, 0.2], # 学习率
}
# 创建网格搜索对象
grid_search = GridSearchCV(estimator=lgb.LGBMClassifier(random_state=42), # LightGBM分类器
param_grid=param_grid, # 参数网格
cv=5, # 5折交叉验证
n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time()
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time()
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的LightGBM分类器 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("网格搜索优化后的LightGBM分类器 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
# --- 2. 贝叶斯优化LightGBM分类器 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from skopt import BayesSearchCV
from skopt.space import Integer, Real
# 定义要搜索的参数空间
search_space = {
'n_estimators': Integer(50, 200), # 树的数量
'max_depth': Integer(-1, 30), # 树的最大深度,-1表示不限制
'num_leaves': Integer(20, 50), # 树的最大叶子节点数
'learning_rate': Real(0.01, 0.2, prior='log-uniform'), # 学习率,对数均匀分布
}
# 创建贝叶斯优化搜索对象
bayes_search = BayesSearchCV(
estimator=lgb.LGBMClassifier(random_state=42),
search_spaces=search_space,
n_iter=32, # 迭代次数,可根据需要调整
cv=5, # 5折交叉验证,这个参数是必须的,不能设置为1,否则就是在训练集上做预测了
n_jobs=-1,
scoring='accuracy'
)
start_time = time.time()
# 在训练集上进行贝叶斯优化搜索
bayes_search.fit(X_train, y_train)
end_time = time.time()
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", bayes_search.best_params_)
# 使用最佳参数的模型进行预测
best_model = bayes_search.best_estimator_
best_pred = best_model.predict(X_test)
print("\n贝叶斯优化后的LightGBM分类器 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的LightGBM分类器 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))