
pandas
文章平均质量分 87
疯狂的超级玛丽
Python
展开
-
熬夜整理!Pandas 文本处理大全
本次来介绍关于文本处理的常用方法。文本的主要两个类型是string和object。如果不特殊指定类型为string,文本类型一般为object。文本的操作主要是通过str来实现的,功能十分强大,但使用前需要注意以下几点。Series除了常规列变量df.col以外,也可以对索引类型df.Index和df.columns使用str如果不是需要先转换类型,否则会报错如,这个和Dataframe中的一行操作是一个原理下面正式介绍文本的各种骚操作,基本可以涵盖日常95%的数据清洗需要了,一共 8 个场景。原创 2024-11-03 11:03:19 · 933 阅读 · 0 评论 -
超强图解Pandas
Pandas是数据挖掘常见的工具,掌握使用过程中的函数是非常重要的。本文将借助可视化的过程,讲解Pandas的各种操作。原创 2024-10-25 17:50:18 · 370 阅读 · 0 评论 -
Pandas与SQL的超强结合,爆赞!
pandas中的DataFrame是一个二维表格,数据库中的表也是一个二维表格,因此在pandas中使用sql语句就显得水到渠成,pandasql使用SQLite作为其操作数据库,同时Python自带SQLite模块,不需要安装,便可直接使用。这里有一点需要注意的是:使用pandasql读取DataFrame中日期格式的列,默认会读取年月日、时分秒,因此我们要学会使用sqlite中的日期处理函数,方便我们转换日期格式,下方提供sqlite中常用函数大全,希望对你有帮助。原创 2024-10-25 17:43:13 · 509 阅读 · 0 评论 -
Pandas 中 Apply 函数加速百倍的技巧
虽然目前dask,cudf等包的出现,使得我们的数据处理大大得到了加速,但是并不是每个人都有比较好的gpu,非常多的朋友仍然还在使用pandas工具包,但有时候真的很无奈,pandas的许多问题我们都需要使用apply函数来进行处理,而apply函数是非常慢的,本文我们就介绍如何加速apply函数600倍的技巧。原创 2024-10-07 15:30:31 · 774 阅读 · 0 评论 -
25个例子学会Pandas Groupby 操作!
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。在本文中,我们将使用25个示例来详细介绍groupby函数的用法。这25个示例中还包含了一些不太常用但在各种任务中都能派上用场的操作。这里使用的数据集是随机生成的,我们把它当作一个销售的数据集。我们可以计算出每个店铺的平均库存数量如下:。原创 2024-10-06 16:00:33 · 813 阅读 · 0 评论 -
最强数据分析神器,Pandas !精选50个高级操作,必读!
在数据分析和数据建模的过程中需要对数据进行清洗和整理等工作,有时需要对数据增删字段。下面为大家介绍Pandas对数据的实际业务需求往往需要按照一定的条件甚至复杂的组合条件来查询数据,接下来为大家介绍如何发挥Pandas数据筛选的无限可能,随心所欲地取用数据。原创 2024-09-25 17:47:31 · 721 阅读 · 0 评论 -
Pandas 神书!历时两年,Datawhale开源项目“熊猫书”重磅出版!
当然,对pandas有一定的基础,并且想要系统学习数据处理与分析方法的读者,也能从中获益,巩固和拓展自己的相关知识。耿远昊以自己的亲身体验出发而写的《pandas数据处理与分析》,其实就是许多初学者想要的:对庞杂的pandas知识体系进行剖析和梳理,找出一条由浅入深的学习路线,找出关键的函数方法,通过理论和实践的有效结合,帮助自己轻松地学习pandas。经过一段时间的思考,他决定自己编写一套关于pandas的教程,希望为有着相似痛苦体验的人提供一些帮助,让pandas的学习和使用变得更轻松。原创 2024-09-25 13:38:24 · 1033 阅读 · 0 评论 -
NumPy、Pandas中若干高效函数!
我们都知道,Numpy是Python环境下的扩展程序库,支持大量的维度数组和矩阵运算;Pandas也是Python环境下的数据操作和分析软件包,以及强大的数据分析库。二者在日常的数据分析中都发挥着重要作用,如果没有Numpy和Pandas的支持,数据分析将变得异常困难。但有时我们需要加快数据分析的速度,有什么办法可以帮助到我们吗?在本文中,数据和分析工程师 Kunal Dhariwal 为我们介绍了 12 种Numpy和Pandas函数,这些高效的函数会令数据分析更为容易、便捷。最后,读者也可以在。原创 2024-09-04 17:49:38 · 1187 阅读 · 0 评论